• Title/Summary/Keyword: Wear-resistance

Search Result 1,367, Processing Time 0.028 seconds

A Study on Temperature Measurement for Quenching of Carbon Steel (탄소강 담금질 공정의 온도 측정방법에 대한 고찰)

  • Kim, D.K.;Jung, K.H.;Kang, S.H.;Im, Y.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • To achieve desired microstructure and mechanical property of a manufacturing product, heat treatment process is applied as a secondary process after forging. Especially, quenching process is used for improving strength, hardness, and wear resistance since phase transformation occurs owing to rapid heat transfer from the surface of the specimen. In the present paper, a study on surface temperature measurement for water quenching of eutectoid steel was investigated. In order to determine the temperature history in experiments, three different measuring schemes were used by varying installation techniques of K-type thermocouples. Depending on the measured temperature distribution at the surface of the specimen, convective heat transfer coefficients were numerically determined as a function of temperature by the inverse finite element analysis considering the latent heat generation due to phase transformation. Based on the inversely determined convective heat transfer coefficient, temperature, phase, and hardness distributions in the specimen after water quenching were numerically predicted. By comparing the experimental and computational hardness distribution at three different locations in the specimen, the best temperature measuring scheme was determined. This work clearly demonstrates the effect of temperature measurement on the final mechanical property in terms of hardness distribution.

Formation of Ti and Ti ceramics composite layer on aluminium alloy (Ti 및 Ti계 세라믹스에 의한 Al합금의 표면복합합금화)

  • ;;;松田福久;中田一博
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.103-114
    • /
    • 1995
  • Plasma Transferred arc(PTA) hard facing process has been developed to obtain an overlay weld metal having excellent wear resistance. The effect of Ti, TiSi$_{2}$ and TiC powders addition on the surface of Aluminum alloy 5083 has been investigated with PTA process. This paper describes the result of test the performance of the overlay weld metal. The result can be summarized as follows 1. Intermetallic compound is formed on surface of base metal in Ti or TiSi$_{2}$ powder but the reaction with surface of base metal is little seen in TiC powder. 2. In formation of composite layer on aluminum alloy surface by plasma transferred arc welding process, high melting ceramics like TiC powder is excellent. 3. The multipass welding process is available for formation of high density of powder. But the more number of pass, the less effect of powder, it is considered, and limits of number of pass. 4. By increasing area fraction of TiC powder on Al alloy surface, in especially TiC powder the hardness increase more than 40% area fraction and 88% shows about Hv 700.

  • PDF

Tribological Properties of Hot Pressed $SiC/Si_3N_4$ Composites (가압소결 $SiC/Si_3N_4$ 복합체의 마찰마모특성)

  • Baik, Yong-Hyuck;Choi, Woong;Park, Yong-Kap
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.10
    • /
    • pp.1102-1107
    • /
    • 1999
  • SiC-Si3N4 composites were prepared by mixing $\alpha$-Si3N4 powder to $\alpha$-SiC powder in the range of 10 to 30 vol% with 10vol% interval. 6wg% Al2O3 and 6wt% Y2O3 were respectively added as sintering aids. Hot pressing was performed at 1,80$0^{\circ}C$ for 1 hour with 25 MPa pressure. In the case of adding 20vol% of $\alpha$-Si3N4 powder the relative density to theoretical value and the flexural strength were 99.1% and 34,420 MPa respectively and the worn amount was 2.09$\times$10-3 mm2 which were the highest values in the all range of he composition. Although the composite containig 10 vol% of $\alpha$-Si3N4 powder showed the highest fracture toughness(KIC) of 4.65MN/m3/2 the reduction of the wear resistance in this composite is likely to be affected by the homogeneity and the uniformity of the grain coalescence and growth during the sintering process.

  • PDF

Characterization of TiC/Mg Composites Fabricated by in-situ Self-propagating High-temperature Synthesis followed by Stir Casting Process (자전연소합성법 및 교반주조 공정으로 제조된 TiC/Mg 금속복합재료의 특성연구)

  • Lee, Eunkyung;Jo, Ilguk
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.256-261
    • /
    • 2020
  • In this study, the ignition temperature of the Al-Ti-C reaction system, the microstructure and the mechanical properties of the TiC/Mg composite which produced by the self-propagating high-temperature synthesis (SHS) followed by stir casting process were investigated. Mg based composite with uniformly dispersed 0, 10, 20, and 30 vol.% TiC were fabricated, and higher volume fraction of TiC reinforced composite showed superior compressive strength and wear resistance as compared with Mg matrix. It is attributed to the less contamination, defects, impurities in TiC/Mg composite by the in-situ SHS yield effective load transfer from the matrix to the reinforcement.

Reliability Evaluation of Aircraft Brake Disk using the Non-contact Air-coupled Ultrasonic Transducer Method (비접촉 초음파 탐상 기법을 이용한 항공기 브레이크 디스크의 신뢰성 평가)

  • Kwak, Nam-Su;Kim, Jae-Yeol;Gao, Jia-Chen;Park, Dae-Kwang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.36-43
    • /
    • 2016
  • Carbon fiber-reinforced silicon carbide (Cf-SiC) and SiC / SiC composites have high thermal conductivity, and excellent corrosion and wear resistance, a low coefficient for thermal expansion and are lightweight. This is why they are commonly used in parts of the aerospace industry to develop an aircraft thrust deflector, jet vane, combustion chamber, elevens, body flap, and a shingle. So, understanding how this state-of-the-art Cf-SiC affects both internal and external crack detection and determining issues during the manufacturing process of composite materials, should be evaluated according to valuation techniques in the external environment. In this paper, we apply a non-contact air ultrasonic technique of non-destructive testing techniques to perform a study on internal defect detection identification and assessment of carbon-fiber reinforced silicon carbide composites to perform basic research and applied research.

Process Optimization for Productivity Improvement during EDM machining of a micro-hole (마이크로 홀의 EDM 가공 시 생산성 향상을 위한 가공공정의 최적화)

  • Kwon, Won-Tae;Kim, Yeong-Chu
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.556-562
    • /
    • 2012
  • Micro electrical discharge machining (${\mu}EDM$) has been used for non-conventional material removal. One drawback of ${\mu}EDM$ is low productivity. In this study, we tried to find the optimal machining conditions to manufacture the micro hole with an optimal machining time without loss of accuracy. Taguchi method was used to figure out the relation between machining parameters and characteristics of the process. It was found that the electrode wear, the entrance and exit clearance gave a significant effect on the diameter of the micro hole when the diameter of the electrode was identical. Grey relational analysis was used to determine the optimal machining condition for minimum machining time without loss of accuracy. The obtained optimal machining condition was the input voltage of 80V, the capacitance of 680pF, the resistance of $500{\Omega}$, the feed rate of $1.5{\mu}m$/s and the spindle speed of 2900rpm. The machining time was reduced to 48% without loss of accuracy under the optimal machining condition.

Mechanical safety evaluation of ceramic ball head for total hip replacement using finite element method (인공고관절 전치환술에서 세라믹 볼 헤드의 기계적 안정성 평가를 위한 유한요소 해석)

  • Han, Sung-Min;Chu, Jun-Uk;Chun, Heoung-Jae;Kim, Jung-Sung;Choi, Kui-Won;Youn, In-Chan
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.6
    • /
    • pp.449-455
    • /
    • 2010
  • A ceramic articulating system in total hip replacement thought to be superior to metal-on-polyethylene due to its extremely low coefficient of friction and potential for high resistance to wear. But ceramic is brittle, which makes it mechanically and theoretically susceptible to fracture under certain mechanical conditions. In the current study, nine different models of ceramic ball heads were mechanically evaluated using 3D finite element(FE) analyses. It was found that the maximum stress in all ceramic models was lower than ceramic flexural strength, and it satisfied the requirements of the FDA Gaudience for artificial hip implant. Thus, ceramic ball head models introduced in the current study could be mechanically safe for clinical applications.

A Comparative Study on Tribological Characteristics between Ni-P Electroless Plating and TiAlN Coating on Anodized Aluminum Alloy (아노다이징된 알루미늄 합금에 대한 TiAlN 코팅, 무전해 Ni-P 도금의 트라이볼로지 특성 비교)

  • Lee, Gyu-Sun;Bae, Sung-Hoon;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.68-72
    • /
    • 2010
  • A ceramic coating is a surface treatment method that is being used widely in the industrial field, recently. Ni-P plating is also being used widely because of its corrosion resistance and low cost. An anodizing method is applicable to aluminum alloy. An anodizing method generates a thick oxide layer on the surface and then, that heightens hardness and protects the surface. These surface treatments are applied to various mechanical components and treated surfaces relatively move one another. In this study, tribological characteristics of Ni-P plating and TiAlN coating on anodized Al alloy are compared. The counterpart, anodized Al alloy, is worn out abrasively by Ni-P plating and TiAlN coating that have higher hardness. Abrasively worn debris accumulated on the surfaces of Ni-P plating and TiAlN coating, and then transferred layer is formed. This transferred layer affects the amplitude of variation of friction coefficient, which is related to noise and vibration. The amplitude of variation of friction coefficient of Ni-P plating is lower than those of TiAlN coating during the tests.

우리나라 양복수용 과정의 복식변천에 대한 연구-문화전파이론을 중심으로-

  • 이유경;김진구
    • Journal of the Korean Society of Costume
    • /
    • v.26
    • /
    • pp.123-143
    • /
    • 1995
  • Clothing as one of elements of culture has been interwoven with cultural diffusion, and accompanied the most visible change. In this paper, it was focused that the process and the characteristics of western clothing adop-tion of Korea from 1876 to 1945 corelating with cultural diffusion theory. They were analyzed through the change of clothing reformation system by government, school uniform, and social phenomenon. The finding of this paper were as followings; 1. The process of western clothing adoption was forcibly demanded by Japan, therefore influenced by Japan. 2. The clothing reformation which was forced to accept western style was confronted by complex of cultural, psychological and economical resistance. 3. The fashion leaders of this period were Korean students studying abroad, diplomatic officials, members of the armed forces, government officials, students of western educational systemed school, and lady of evangelist. 4. Man adopted western clothing earlier than woman. 5. Western clothing adoption was took precedence in case of formal wear, diplomatic official's attire, military uniform, and school uniform. 6. In this process, we can find 'transculturation' by Malinowski and 'reinter-pretation' by Herskovits. 7. This process was a kind of 'reorientaion'. 8. The change of clothing which was affected by the tradition, for example, robe for the ancestral rites was evolutionary than others. 9. Clothing elements based on mental or internal characteristics like which clothing was hardly changed by compulsion or extortion. 10. The external trends of clothing change during this period were simplicity, utility, and decrease of status symbols.

  • PDF

A Study on the Ultrasonic Machining Characteristics of Alumina Ceramics (알루미나 세라믹의 초음파가공 특성 연구)

  • Kang, Ik-Soo;Kang, Myung-Chang;Kim, Jeong-Suk;Kim, Kwang-Ho;Seo, Yong-Wie
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.1
    • /
    • pp.32-38
    • /
    • 2003
  • Engineering ceramics have many unique characteristics both in mechanical and physical properties such as high temperature hardness, high thermal, chemical and electrical resistance. However, its machinability is very poor in conventional machining due to its high hardness and severe tool wear. In the current experimental study alumina($Al_2O_3$) was ultrasonically machined using SiC abrasives under various machining conditions to investigate the material removal rate and surface quality of the machined samples. Under the applied amplitude of 0.02mm, 27kHz frequency, three slurry ratios (abrasives water by weight) of 11, 13 and 15 with different tool shapes and applied pressure levels, the machining was conducted. Using the mesh number of 240 abrasive, slurry ratio of 11 and static pressure of $25kg/cm^2$, maximum material removal rate of $18.97mm^3/mm$ was achieved with mesh number of 600 SiC abrasives and static pressure of $30kg/cm^2$, best surface roughness of $0.76{\mu}m$ Ra was obtained.

  • PDF