• 제목/요약/키워드: Wear resistance performance

검색결과 187건 처리시간 0.027초

소결 밸브시트의 미세조직 및 기계적 성질에 미치는 볼밀 분말 혼합비의 영향 (Effects of Mixing Ratio of the Milled Powder on Microstructure and Mechanical Properties of Sintered Valve Seats)

  • 최성태;박종관;최창수;정인상
    • 한국분말재료학회지
    • /
    • 제10권2호
    • /
    • pp.89-96
    • /
    • 2003
  • The recent trend of miniaturization and high performance of vehicle engines has put an urgent necessity for the development of valve seats which can operate under more severe conditions. In order to develope valve seat material that has the most excellent wear resistance at operating temperature of engine through improvement of the progress of work. the effects of mixing ratio of the milled powder on sintered and Cu-infiltrated properties of sintered valve seats have been studied. The resultant radial crushing strength and hardness of sintered specimens were gradually increased with increasement of volume of milled powders. It is because increasement of sintering density by increasing of surface diffusion. The hardness of Cu-infiltrated specimens became lower than that of the commercial powders as the increasement of volume of milled powders. It was due to the decrease of the amount of the martensite. By results of this research, It has been found that martensite is formed around of the Cu-infiltrated site and the decrease of the amount of the martensite is due to decrease of the amount of the Cu-infiltrated site by the decrease of gas channel.

Effect of laser shock peening and cold expansion on fatigue performance of open hole samples

  • Rubio-Gonzalez, Carlos;Gomez-Rosas, G.;Ruiz, R.;Nait, M.;Amrouche, A.
    • Structural Engineering and Mechanics
    • /
    • 제53권5호
    • /
    • pp.867-880
    • /
    • 2015
  • Mechanical fastening is still one of the main methods used for joining components. Different techniques have been applied to reduce the effect of stress concentration of notches like fastener holes. In this work we evaluate the feasibility of combining laser shock peening (LSP) and cold expansion to improve fatigue crack initiation and propagation of open hole specimens made of 6061-T6 aluminum alloy. LSP is a new and competitive technique for strengthening metals, and like cold expansion, induces a compressive residual stress field that improves fatigue, wear and corrosion resistance. For LSP treatment, a Q-switched Nd:YAG laser with infrared radiation was used. Residual stress distribution as a function of depth was determined by the contour method. Compact tension specimens with a hole at the notch tip were subjected to LSP process and cold expansion and then tested under cyclic loading with R=0.1 generating fatigue cracks on the hole surface. Fatigue crack initiation and growth is analyzed and associated with the residual stress distribution generated by both treatments. It is observed that both methods are complementary; cold expansion increases fatigue crack initiation life, while LSP reduces fatigue crack growth rate.

차량용 주석 도금된 구리 커넥터에서 미세진동에 의한 전기접촉 저항변화에 관한 연구 (A study on change in electric contact resistance of the tin-plated copper connector of automotive sensor due micro-vibration)

  • 유환신;박형배
    • 한국항행학회논문지
    • /
    • 제12권6호
    • /
    • pp.653-658
    • /
    • 2008
  • 자동차에 적용되는 각종 전자 부품의 복잡도는 21세기를 맞이하면서 급속도로 변화하고 있다. 특히, 각종 전기, 전자 시스템의 급증은 자동차의 안전과 직결되는 문제로 인식되고 있다. 차량의 전장 및 전자부품을 연결해주는 커넥터는 인간의 신경망과 같아서 조그마한 접촉 불량도 차량의 운전에 심각한 영향을 미칠 수 있다. 차량의 진동과 커넥터 단자의 열 변형으로 인한 프레팅 부식은 산화막을 형성하여 접촉저항을 증가시키고 특히 산화층은 진접촉면적의 감소와 상승저항 등 터널 효과에서 급격한 상승을 보이는 결과로 제어신호를 왜곡하여 작동기의 동작오류를 초례한다. 본 논문에서는 이러한 프레팅 부식 현상을 검증하기 위한 주석으로 도금된 구리 커넥터에 스텝핑 모터를 사용하여 일정한 변위를 갖는 미세 진동을 유발하여 프레핑 부식의 진행과 접촉저항의 변화를 고찰하여 이에 대한 대비책을 강구하고자 한다.

  • PDF

유성볼밀링 및 스파크 플라즈마 소결법으로 제조한 Mo-5~20 wt%. Cu 합금의 열적 특성 (Thermal Property of Mo-5~20 wt%. Cu Alloys Synthesized by Planetary Ball Milling and Spark Plasma Sintering Method)

  • 이한찬;문경일;신백균
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.516-521
    • /
    • 2016
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile, and many other applications due to their excellent physical and electric properties. Especially, Mo-Cu composites with 5 ~ 20 wt.% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength, and prominent electrical and thermal conductivity. In most of the applications, highly-dense Mo-Cu materials with homogeneous microstructure are required for better performance. In this study, Mo-Cu alloys were prepared by PBM (planetary ball milling) and SPS (spark plasma sintering). The effect of Cu with contents of 5~20 wt.% on the microstructure and thermal properties of Mo-Cu alloys was investigated.

방전 플라즈마 소결법으로 제작한 Mo-Cu 합금의 열적, 전기적 특성 (A Study on the Thermal and Electrical Properties of Fabricated Mo-Cu Alloy by Spark Plasma Sintering Method)

  • 이한찬;이붕주
    • 전기학회논문지
    • /
    • 제66권11호
    • /
    • pp.1600-1604
    • /
    • 2017
  • Mo-Cu alloys have been widely used for heat sink materials, vacuum technology, automobile and many other applications due to their excellent physical and electronic properties. Especially, Mo-Cu composites with 5~20 wt% copper are widely used for the heavy duty service contacts due to their excellent properties like low coefficient of thermal expansion, wear resistance, high temperature strength and prominent electrical and thermal conductivity. In most of the applications, high dense Mo-Cu materials with homogeneous microstructure are required for high performance, which has led in turn to attempts to prepare ultra-fine and well-dispersed Mo-Cu powders in different ways, such as spray drying and reduction process, electroless plating technique, mechanical alloying process and gelatification-reduction process. However, most of these methods were accomplished at high temperature (typically degree), resulting in undesirable growth of large Cu phases; furthermore, these methods usually require complicated experimental facilities and procedure. In this study, Mo-Cu alloying were prepared by planetary ball milling (PBM) and spark plasma sintering (SPS) and the effect of Cu with contents of 5~20 wt% on the microstructure and properties of Mo-Cu alloy has been investigated.

In-process Topographical Evaluation of CBN wheel surface

  • Lee, Joosang;Kim, Heenam;Minsung Hong
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.507-513
    • /
    • 1998
  • In surface grinding, the conditions of the grinding wheel has much more significant effect on the machined workpiece as compared to other metal removal processes. The contact between the grinding wheel and the workpiece introduce heat and resistance, which restrict the self-dressing of the grits and result in burrs cracks on the workpiece. Therefore, before or during the grinding operation, it is necessary to self-dressing the grinding wheel for more accurate performance. In general, however, the choice of the dressing time has made by the operator's own decision or the condition of the workpiece. In this paper, a new method for finding the optimal dressing time of the grinding wheel is proposed. In order to develop a more sophisticated methodology, a non-contacting in-process optical measurement method using a laser beam has been introduced to find the glazing, loading, and spilling of the grinding wheel Simultaneously, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism between the grinding wheel and the workpiece. The grains of the grinding wheel are simulated and the optimal dressing time is determined based on the amount of grain wear and work surface roughness.

  • PDF

SCP-1재료 적용을 위한 초경재료 펀치의 내마모성에 대한 연구 (A study on the abrasion resistance of punching carbide material of die for the application of SCP-1 material)

  • 김승수;이민;이춘규
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.44-48
    • /
    • 2019
  • Motor core products are used as materials for electrical steel sheets and cold-rolled steel sheets according to the performance of motors. The cemented carbide material of the mold punch applied to the motor core material causes many troubles due to abrasion and burr problem. The selection of these materials has a great effect on the production life, mass production, product quality as well as mold life. The cemented carbide applied to the products of the motor core is recognized as a very important part. In this study, cold rolled steel sheet was applied to motor core SCP-1 steel 1.0mm, and The effects of abrasion and punching oil on the shear process were investigated for the selection of cemented carbide. Experiments were conducted to select and apply cemented carbide only for the motor core punch optimized for cold rolled steel. The results showed that the cemented carbide material of $CDK3^{***}$ produced the least wear and burrs.

저온 성능이 향상된 Calcium Sulfonate 그리스의 합성 및 트라이볼로지 특성 연구 (A Study on the Synthesis and Tribological Characteristics of Calcium Sulfonate Grease with Improved Low-temperature Performance)

  • 김광태;박현호;이창섭
    • 공업화학
    • /
    • 제34권4호
    • /
    • pp.434-443
    • /
    • 2023
  • 세계적으로 가장 많이 사용되고 있는 리튬 그리스의 대체 물질로서 calcium sulfonate 그리스를 합성하여 성능을 개선하였다. Calcium sulfonate 그리스의 저온성 문제를 해결하기 위하여 PAO (poly alpha olefin) 기반의 기유와 증주제를 도입하였다. 본 연구에서는 파라핀 오일과 PAO 기반의 기유와 증주제로 calcium sulfonate 그리스 3종을 합성하였으며, PAO 기반의 기유와 수산화 리튬, 12-hydroxy stearic acid, sebacic acid의 비누화 반응으로 리튬 그리스 1종을 합성하였다. 합성한 calcium sulfonate 그리스 3종과 리튬 그리스의 형태, 미세 구조 및 작용기는 SEM 및 FT-IR로 분석하였다. 저온 특성은 rheometer, low temperature torque로 측정하였고, 트라이볼로지 특성은 four ball lubricant tester, SRV로 측정하였다. 그 결과, PAO 기반의 기유와 증주제로 합성된 calcium sulfonate 그리스는 -40℃에서도 유동할 수 있었으며, 기존 calcium sulfonate 그리스의 저온 특성의 한계점을 극복하였다. 또한 합성한 calcium sulfonate 그리스는 PAO 기유로 합성된 리튬 그리스보다 우수한 내마모성, 내하중성, 마찰계수, 내열성, 점착성 및 내부식성을 보였으므로 상업적으로 기존의 리튬 그리스를 대체할 수 있을 것으로 기대된다.

드릴공구의 이종질화막상 DLC 희생층 적용을 통한 공구 수명 개선 연구 (A Study on the Improvement of Tool's Life by Applying DLC Sacrificial Layer on Nitride Hard Coated Drill Tools)

  • 강용진;김도현;장영준;김종국
    • 한국표면공학회지
    • /
    • 제53권6호
    • /
    • pp.271-279
    • /
    • 2020
  • Non-ferrous metals, widely used in the mechanical industry, are difficult to machine, particularly by drilling and tapping. Since non-ferrous metals have a strong tendency to adhere to the cutting tool, the tool life is greatly deteriorated. Diamond-like carbon (DLC) is one of the promising candidates to improve the performance and life of cutting tool due to their low frictional property. In this study, a sacrificial DLC layer is applied on the hard nitride coated drill tool to improve the durability. The DLC coatings are fabricated by controlling the acceleration voltage of the linear ion source in the range of 0.6~1.8 kV. As a result, the optimized hardness(20 GPa) and wear resistance(1.4 x 10-8 ㎣/N·m) were obtained at the 1.4 kV. Then, the optimized DLC coating is applied as an sacrificial layer on the hard nitride coating to evaluate the performance and life of cutting tool. The Vickers hardness of the composite coatings were similar to those of the nitride coatings (AlCrN, AlTiSiN), but the friction coefficients were significantly reduced to 0.13 compared to 0.63 of nitride coatings. The drilling test were performed on S55C plate using a drilling machine at rotation speed of 2,500 rpm and penetration rate of 0.25 m/rev. The result showed that the wear width of the composite coated drills were 200 % lower than those of the AlCrN, AlTiSiN coated drills. In addition, the cutting forces of the composite coated drills were 13 and 15 % lower than that of AlCrN, AlTiSiN coated drills, respectively, as it reduced the aluminum clogging. Finally, the application of the DLC sacrificial layer prevents initial chipping through its low friction property and improves drilling quality with efficient chip removal.

핫 프레스 성형용 EL-Max 소재 초정밀 연삭 가공에 관한 연구 (Study on Ultra-precision Grinding of EL-Max Material for Hot Press Molding)

  • 박순섭;고명진;김건희;원종호
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1267-1271
    • /
    • 2012
  • Demand for optical glass device used for lighting could increase rapidly because of LED lighting market growth. The optical glass devices that have been formed by hot press molding process the desired optical performance without being subjected to mechanical processing such as curve generation or grinding. EL-Max material has been used for many engineering applications because of their high wear resistance, high compressive strength, corrosion resistant and very good dimensional stability. EL-Max is very useful for a glass lens mold especially at high temperature and pressure. The performance and reliability of optical components are strongly influenced by the surface damage of EL-Max during grinding process. Therefore, the severe process condition optimization shall be necessary for the highly qualified EL-Max glass lens mold. To get the required qualified surface of EL-Max, the selection of type of the diamond wheel is also important. In this paper, we report best grinding conditions of ultra-precision grinding machining. The grinding machining results of the form accuracy and surface roughness have been analyzed by using Form Talysurf and NanoScan.