• 제목/요약/키워드: Wear resistance performance

검색결과 192건 처리시간 0.024초

아스팔드 표면에 사용되는 자갈골재 평가 과정 개발에 대한 연구 (A Study on the Development of a Procedure to Identify Gravel Aggregates for Bituminous Surfaces)

  • Jung Chan Choi
    • 지질공학
    • /
    • 제8권3호
    • /
    • pp.235-245
    • /
    • 1998
  • 도로에서의 미끄러짐을 방지하고 차량이 적당한 거리에서 정지할 수 있기 위해서는 적절한 마찰저항이 필요하다. 골재의 마찰저항력은 차량소통의 결과로 시간경과에 따라 마모 및 연마되어 감소하게 된다. 이 연구목적은 현장마찰 저항력을 예측하고 자갈골재간의 마찰저항치의 변화를 야기하는 원인을 규명하기 위해서 인디아나 자갈골재 실내시험방법을 개발하는 것이다. 자갈골재 연구에 대한 접근방법은 첫 번째로 각 각의 구성 암석형태 및 구성비율을 분석하는 것이다. 본 연구에 사용된 자갈들은 주로 탄산염암 골재로 구성되어 있으며 연마에 의한 저항치의 변화가 심하였다. 자갈을 구성하는 화성암 및 변성암은 이에 비해 연마에 의한 저항치의 변화가 적었으며 전체 골재의 마찰저항력을 증진시키는 것으로 사료된다. 파쇄자갈시료의 초기마찰 저항치 (IEV)와 연마 후 수치 (PV)의 평가는 시료 내 암종의 백분율에 따라 실행되었으며 가중평균이 적용되었다.

  • PDF

고성능 에너지 절약형 타이어 트레드 고무의 합성 제조 기술 (Advanced Synthetic Technology for High Performance Energy Tire Tread Rubber)

  • 이범재;임기원;지상철;정권영;김태중
    • Elastomers and Composites
    • /
    • 제44권3호
    • /
    • pp.232-243
    • /
    • 2009
  • 근래 고성능 친환경 타이어의 개발요구에 의하여 경제성(낮은 회전 저항)과 안전성(wet traction) 및 내마모성면에서 균형있는 특성을 가지는 타이어 트레드 고무의 합성 제조 기술이 중요하게 대두된다. 이를 위하여 다양한 기능성 용액중합 SBR의 개발과 함께 고무/충전제 간의 상호작용 증진 기술이 학술적으로나 산업적으로 활용되고 있다. 본 고에서는 기존의 카본블랙 고무와 함께 최근 green tire로서 각광 받는 실리카 충전 고무에서 충전제와 상호반응이 가능한 화학적 변성 SBR과 커플링제를 이용한 고성능 타이어 트레드 고무의 합성 제조 기술에 대하여 최근 연구 방향과 함께 작용 메카니즘에 대하여 고찰하였다.

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권4호
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

기상중합법으로 제조된 Poly(3,4-ethylenedioxythiophene)(PEDOT)-금속산화물 복합 박막의 물리화학적 물성 향상에 관한 연구 (Study on the Improvement of Physicochemical Properties of PEDOT-Metal Oxide Composite Thin Film by Vapor Phase Polymerization)

  • 남미래;임진형
    • 폴리머
    • /
    • 제36권5호
    • /
    • pp.599-605
    • /
    • 2012
  • 기상중합으로 제조된 poly(3,4-ethylenedioxythiophene)(PEDOT) 박막을 다양한 금속 알콕사이드 졸 용액으로 후처리하여 내용제성, 내스크래치성, 연필경도와 같은 물리화학적 특성을 효과적으로 개선하였다. 기상중합으로 제조된 PEDOT 층위에 금속 알콕사이드의 졸-젤 공정으로부터 유도된 금속 산화막이 형성되어 전기적 특성의 큰 손실 없이 기계적 물성을 증대시킬 수 있었다. 금속 알콕사이드 졸은 다양한 기능기를 가지는 실리콘 및 티타늄계 알콕사이드 화합물을 사용하였다. 이 중에서 tetraethyl orthosilicate를 기반으로 한 금속 알콕사이드 졸을 사용한 경우의 PEDOT-금속산화물 복합 박막이 표면저항, 투과도 및 다양한 물리화학적 물성 관점에서 가장 우수하였다. PEDOT-금속산화물 복합 박막의 전기적, 광학적, 물리화학적 특성 관점에서의 최적화를 위하여 금속 알콕사이드 졸의 함량, 산화제 함량, 후처리 후의 건조온도에 따른 효과를 살펴보았다.

PEO 전류밀도 조건에 따른 알루미늄도금 강재상 산화코팅막의 특성 (Characteristics of Coating Films on Hot-Dipped Aluminized Steel Formed by Plasma Electrolytic Oxidation Process at Different Current Densities)

  • 최인혜;이훈성;이명훈
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.366-372
    • /
    • 2017
  • Plasma electrolytic oxidation(PEO) has attracted attention as a surface treatment which has high wear resistance and corrosion resistance. PEO is generally considered as cost-effective, environmentally friendly and superior in terms of coating performance. Most of studies about the PEO processes have been applied to light metals such as Al and Mg. Because the strength of Al and Mg is weaker than that of steel, there is a limit to the application. In this study, PEO process was used to form oxide coatings on Hot dipped aluminized(HDA) steel and the characteristics of the coating film according to the PEO current density were studied. The morphology was observed by SEM and component was analyzed by using EDS. The corrosion behaviors of PEO coating films were estimated by exposing salt spray test at 5 wt.% NaCl solution and measuring polarization curves in deaerated 3 wt.% NaCl solution. With the increase of PEO process current density, the pore size of the coating surface and the thickness of coating increased. It was confirmed that no Fe component was present on the coating surface. PEO coating films obviously showed good corrosion resistance compared with HDA. It is considered that the PEO coating acts as a barrier to protect the base material from external factors causing corrosion.

화학공정용 전동기에 사용된 3D 프린팅 플라스틱 볼베어링의 내화학성 평가 및 현장적용 연구 (Chemical Resistance and Field Trial of 3D-Printed Plastic Ball Bearing Used in Electric Motors for Chemical Processes)

  • 권영준;노명규
    • Tribology and Lubricants
    • /
    • 제39권1호
    • /
    • pp.1-7
    • /
    • 2023
  • Fluid pumps in chemical processes are typically driven by electric motors. Even if the motor is separated from the pump with seals, wear resulting from friction and misalignment can lead to leakage of chemical fluid, causing corrosion in the bearing supporting the motor, and, eventually, failure of the motor. It is thus a standard procedure to replace bearings at regular intervals. In this article, we propose 3D-printed plastic ball bearings for use as an alternative to commercial stainless-steel ball bearings. The plastic bearings are easy to manufacture, require less time to replace, and are chemically resistant. To validate the applicability of the plastic bearings, we first conducted chemical resistance tests. Bearings were immersed in 30 caustic acid and 30 nitric acid for 30 min and 24 h, respectively. The test results showed no corrosive damage to the bearings. A test rig was set up to compare the performance of the plastic bearings with that of the commercially equivalent deep-groove ball bearings. Loading test results showed that the plastic bearings performed as well as the commercial bearing in terms of vibration level and load-handling capability. Finally, a plastic bearing was subjected to a clean-in-place process for three months. It actually outperformed the commercial bearing in terms of chemical resistance. Thus, 3D-printed plastic bearings are a viable alternative to stainless-steel ball bearings.

연삭가공시 연삭숫돌의 드레싱 시기 검출 방법에 관한 연구 (A study on the dressing time monitoring method of grinding wheel in surface grinding)

    • 한국생산제조학회지
    • /
    • 제7권1호
    • /
    • pp.112-118
    • /
    • 1998
  • In surface grinding, the contact between the grinding wheel and workpiece introduce heat and resistance, which restrict the self-dressing of the grits and result in burrs and cracks on the workpiece. Therefore, before or during the grinding operation, it is necessary to self-dress the grinding wheel for more accurate performance. In order to determine the dressing time monitoring method of grinding wheel in surface grinding, a three-dimensional computer simulation of the grinding operation has been attempted based on the contact mechanism and surface-shaping system between the grinding wheel and the workpiece. The optimal dressing time is determined based on the grain wear and work surface roughness.

  • PDF

Development of high power impulse magnetron sputtering (HiPIMS) techniques

  • Lee, Jyh-Wei
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.3-32
    • /
    • 2016
  • High power impulse magnetron sputtering (HiPIMS) technique has been developed for more than 15 years. It is characterized by its ultra-high peak current and peak power density to obtain unique thin film properties, such as high hardness, good adhesion and tribological performance. However, its low deposition rate makes it hard to be applied in industries. In this work, the development of HiPIMS system and integration of radio frequency (RF) or mid-frequency (MF) power supplies were introduced. Effects of duty cycle and repetition frequency on the microstructure, mechanical property, optical and electrical properties of some binary, ternary and quarternary nitride coatings and oxide thin films were discussed. It can be observed that the deposition rate was effectively increased by the superimposed HiPIMS with RF or MF power. High hardness, good adhesion and sufficient wear resistance can be obtained through a proper adjustment of processing parameters of HiPIMS power system.

  • PDF

Pulsed laser surface modification for heat treatment and nano-texturing on biometal surface

  • Jeon, Hojeong
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.118.1-118.1
    • /
    • 2016
  • The laser surface modification has been reported for its functional applications for improving tribological performance, wear resistance, hardness, and corrosion property. In most of these applications, continuous wave lasers and pulsed lasers were used for surface melting, cladding, alloying. Since flexibility in processing, refinement of microstructure and controlling the surface properties, technology utilizing lasers has been used in a number of fields. Especially, femtosecond laser has great benefits compared with other lasers because its pulsed width is much shorter than characteristic time of thermal diffusion, which leads to diminish heat affected zone. Moreover, laser surface engineering has been highlighted as an effective tool for micro/nano structuring of materials in the bio application field. In this study, we applied femtosecond and nanosecond pulsed laser to treat biometals, such as Mg, Mg alloy, and NiTi alloy, by heating to improve corrosion properties and functionalize their surface controlling cell response as implantable biomedical devices.

  • PDF

자동차 브레이크용 마찰재에 사용되는 고체 윤활제에 따른 제동특성에 관한 연구 (Effect of Different Solid Lubricants in the Automotive Friction Material on Friction Characteristics)

  • 이정주;장호
    • Tribology and Lubricants
    • /
    • 제14권3호
    • /
    • pp.17-23
    • /
    • 1998
  • Friction materials with three different formulations containing different solid lubricants were investigated to study the role of lubricants on the friction performance. The three friction materials contained graphite 10 vol.%, graphite 7 vol.%+$MoS_2$ 3 vol.%, and graphite 7 vol.%+$Sb_2S_3$ 3 vol.%, respectively, with the same amount of other ingredients. Results of this work showed that each formulation with different lubricants had unique advantages and disadvantages. The friction materials containing graphite 7 vol.%+$MoS_2$ 3 vol.% and graphite 7 vol.%+$Sb_2S_3$ 3 vol.% showed better resistance to fading and improved friction stability compared to the friction materials containing graphite only as a lubricant. However, the friction materials with two lubricants (graphite+$MoS_2$ or $Sb_2S_3$) showed disadvantages on DTV generation and rotor wear.