DOI QR코드

DOI QR Code

Study on the Improvement of Physicochemical Properties of PEDOT-Metal Oxide Composite Thin Film by Vapor Phase Polymerization

기상중합법으로 제조된 Poly(3,4-ethylenedioxythiophene)(PEDOT)-금속산화물 복합 박막의 물리화학적 물성 향상에 관한 연구

  • Nam, Mi-Rae (Division of Advanced Materials Engineering, Kongju National University) ;
  • Yim, Jin-Heong (Division of Advanced Materials Engineering, Kongju National University)
  • 남미래 (공주대학교 천안공과대학 신소재공학부) ;
  • 임진형 (공주대학교 천안공과대학 신소재공학부)
  • Received : 2012.02.15
  • Accepted : 2012.05.01
  • Published : 2012.09.25

Abstract

The physicochemical properties such as surface hardness, solvent mechanical wear resistance, and resistance to scratch properties of poly(3,4-ethylenedioxythiophene) (PEDOT) thin film prepared by vapor phase polymerization (VPP) was effectively improved by post-treatment of various metal alkoxide sol solutions. Metal oxide layer derived from sol-gel process of metal alkoxide was generated on the PEDOT thin film layer by VPP, resulting in improving mechanical properties of the conductive thin films without any deterioration of their original surface resistance. Several kinds of silicone and titanium alkoxide derivatives with various functional groups were used as metal alkoxide sol sources. Among them, PEDOT-metal oxide composite thin film derived tetraethyl orthosilicate showed the best performance in the terms of surface resistance, transmittance, and various physicochemical properties. The effect of metal alkoxide content in washing solution, oxidant content and drying temperature have been investigated in order to optimize the various properties of PEDOT-metal oxide composite thin film.

기상중합으로 제조된 poly(3,4-ethylenedioxythiophene)(PEDOT) 박막을 다양한 금속 알콕사이드 졸 용액으로 후처리하여 내용제성, 내스크래치성, 연필경도와 같은 물리화학적 특성을 효과적으로 개선하였다. 기상중합으로 제조된 PEDOT 층위에 금속 알콕사이드의 졸-젤 공정으로부터 유도된 금속 산화막이 형성되어 전기적 특성의 큰 손실 없이 기계적 물성을 증대시킬 수 있었다. 금속 알콕사이드 졸은 다양한 기능기를 가지는 실리콘 및 티타늄계 알콕사이드 화합물을 사용하였다. 이 중에서 tetraethyl orthosilicate를 기반으로 한 금속 알콕사이드 졸을 사용한 경우의 PEDOT-금속산화물 복합 박막이 표면저항, 투과도 및 다양한 물리화학적 물성 관점에서 가장 우수하였다. PEDOT-금속산화물 복합 박막의 전기적, 광학적, 물리화학적 특성 관점에서의 최적화를 위하여 금속 알콕사이드 졸의 함량, 산화제 함량, 후처리 후의 건조온도에 따른 효과를 살펴보았다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. C. K. Ching, C. R. Fincher, Y. W. Park, A. J. Heeger, H. Shirakawa, E. J. Louis, S. C. Gau, and A. G. MacDiarmid, Phys. Rev. Lett., 39, 1098 (1977). https://doi.org/10.1103/PhysRevLett.39.1098
  2. A. O. Patil, A. J. Heeger, and F. Wudl, Chem. Rev., 88, 183 (1988). https://doi.org/10.1021/cr00083a009
  3. J.-I. Jin, Polymer(Korea), 12, 301 (1988).
  4. W. Bantikassegn and O. Inganas, Thin Solid Films, 293, 138 (1997). https://doi.org/10.1016/S0040-6090(96)08958-4
  5. L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater., 12, 481 (2000). https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C
  6. P. Vacca, M. Petrosino, R. Miscioscia, G. Nenna, C. Minarini, D. D. Sala, and A. Rubino, Thin Solid Films, 516, 4232 (2008).
  7. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller- Meskamp, and K. Leo, Adv. Funct. Mater., 21, 1076 (2011). https://doi.org/10.1002/adfm.201002290
  8. L. Groenendaal, G. Zotti, and F. Jonas, Syn. Met., 118, 105 (2001). https://doi.org/10.1016/S0379-6779(00)00289-7
  9. A. Eftekhari, Syn. Met., 125, 295 (2002).
  10. Y.-H. Han and J.-H. Yim, Polymer(Korea), 34, 450 (2010).
  11. J. P. Lock, S. G. Im, and K. K. Gleason, Macromolecules, 39, 5326 (2006). https://doi.org/10.1021/ma060113o
  12. J. Jang and B. Lim, Angew. Chem., 115, 5758 (2003). https://doi.org/10.1002/ange.200352113
  13. M. Choi, B. Lim, and J. Jang, Macromol. Res., 16, 200 (2008). https://doi.org/10.1007/BF03218853
  14. S. G. Im and K. K. Gleason, Macromolecules, 40, 6552 (2007). https://doi.org/10.1021/ma0628477
  15. B. Winther-Jensen and K. West, Macromolecules, 37, 4538 (2004). https://doi.org/10.1021/ma049864l
  16. J. Kim, E. Kim, Y. Won, H. Lee, and K. Suh, Syn. Met., 139, 485 (2003). https://doi.org/10.1016/S0379-6779(03)00202-9
  17. M. Fabretto, K. Zuber, C. Hall, and P. Murphy, Macromol. Rapid Commun., 29, 1403 (2008). https://doi.org/10.1002/marc.200800270
  18. C. M. Madla, P. N. Kariukia, J. Gendrona, L. F. J. Piperb, and W. E. J. Jr., Syn. Met., 161, 1159 (2011). https://doi.org/10.1016/j.synthmet.2011.03.024
  19. T. L. Truong, D.-O. Kim, Y. K. Lee, T.-W. Lee, J. J. Park, L. Pu, and J.-D. Nam, Thin Solid Films, 516, 6020 (2008). https://doi.org/10.1016/j.tsf.2007.10.114
  20. T. L. Truong, N. D. Luong, and J.-D. Nam, Macromol. Res., 15, 465 (2007). https://doi.org/10.1007/BF03218815
  21. F. Jonas and J. T. Morrison, Syn. Met., 85, 1397 (1997). https://doi.org/10.1016/S0379-6779(97)80290-1
  22. G. A. Sotzing, J. L. Reddinger, and J. R. Reynolds, Syn. Met., 84, 199 (1997). https://doi.org/10.1016/S0379-6779(97)80712-6
  23. P. Tehrani, L.-O. Hennerdal, A. L. Dyer, J. R. Reynolds, and M. Berggren, J. Mater. Chem., 19, 1799 (2009). https://doi.org/10.1039/b820677e
  24. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Müller- Meskamp, and K. Leo, Adv. Funct. Mater., 21, 1076 (2011). https://doi.org/10.1002/adfm.201002290
  25. P.-C. Nien, J.-Y. Wang, P.-Y. Chen, L.-C. Chen, and K.-C. Ho, Bior. Tech., 101, 5480 (2010). https://doi.org/10.1016/j.biortech.2010.02.012
  26. B. G. Soares and M. E. Leyva, Macromol. Mater. Eng., 292, 354 (2007). https://doi.org/10.1002/mame.200600405
  27. E. Ruckenstein and Y. Sun, Syn. Met., 75, 79 (1995). https://doi.org/10.1016/0379-6779(95)03489-7
  28. Y.-T. Lee, Polym. Sci. & Tech., 4, 441 (1993).
  29. D. G. Park, Polym. Sci. & Tech., 8, 248 (1997).
  30. J. O. Park, Polym. Sci. & Tech., 8, 261 (1997).
  31. J. S. Choi, J.-K. Jeon, Y. S. Ko, Y.-K. Park, S.-G. Kim, and J.-H. Yim, Thin Solid Films, 517, 3645 (2009). https://doi.org/10.1016/j.tsf.2008.11.122
  32. Y.-H. Han, J. Travas-Sejdic, B. Wright, and J.-H. Yim, Macromol. Chem. Phys., 212, 521 (2011). https://doi.org/10.1002/macp.201000634
  33. G. V. A. Aben and M. J. M. Somers, U.S. Patent 6,404,120 B1 (2002).
  34. ASTM D3363, 05 Standard Test Method for Film Hardness by Pencil Test, Book of standards Vol. 6, 1.
  35. D. Brunel, N. Bellocq, P. Sutra, A. Cauvel, M. Lasperas, P. Moreau, F. D. Renzo, A. Galarneau, and F. Fajula, Coord. Chem. Rev., 178-180, 1085 (1998). https://doi.org/10.1016/S0010-8545(98)00121-0
  36. S. Kim, I. Pang, and J. Lee, Macromol. Rapid Commun., 28, 1574 (2007). https://doi.org/10.1002/marc.200700272
  37. M. J. Van bommel and T. N. M. Bernards, J. Sol-Gel Sci. & Tech., 8, 459 (1997).
  38. K.-H. Lee, B.-H. Lee, B.-K. Oh, K.-H Ahne, and J.-O Kim, J. Korean Ceram. Soc., 27, 471 (1989).
  39. S. Garreau, G. Louarn, J. P. Buisson, G. Froyer, and S. Lefrant, Macromolecules, 32, 6807 (1999). https://doi.org/10.1021/ma9905674
  40. M. apkowski, and A. Pron, Syn. Met., 110, 79 (2000). https://doi.org/10.1016/S0379-6779(99)00271-4
  41. F. Tran-Van, S. Garreau, G. Louarn, G. Froyer, and C. Chevrot, J. Mater. Chem., 11, 1378 (2001). https://doi.org/10.1039/b100033k
  42. W. W. Chiu, J. Travas-Sejdic, R. P. Cooney, and G. A. Bowmaker, J. Raman Spectrosopy, 37, 1354 (2006). https://doi.org/10.1002/jrs.1545
  43. J. S. Choi, K. Y. Cho, and J.-H. Yim, Eur. Polym. J., 46, 389 (2010). https://doi.org/10.1016/j.eurpolymj.2009.11.010
  44. D. O. Kim, P.-C. Lee, S.-J. Kang, K. Jang, J.-H. Lee, M. H. Cho, and J.-D. Nam, Thin Solid Films, 517, 4516 (2009).