DOI QR코드

DOI QR Code

Effect of Post-Process on Physical Properties of Electrospun PEI/PVdF Blend Nonwoven Web

전기방사법으로 제조한 PEI/PVdF 블렌드 웹의 물리적 특성에 대한 후처리 영향

  • Seok, Hoon (Center for Materials Architecturing, Institute of Multi-disciplinary Convergence of Matters, Korea Institute of Science and Technology) ;
  • Park, Cheol-Min (Department of Material Science and Engineering, Yonsei University) ;
  • Kim, Dong-Young (Center for Materials Architecturing, Institute of Multi-disciplinary Convergence of Matters, Korea Institute of Science and Technology) ;
  • Jo, Seong-Mu (Center for Materials Architecturing, Institute of Multi-disciplinary Convergence of Matters, Korea Institute of Science and Technology)
  • 석훈 (한국과학기술연구원 다원물질융합연구소 물질구조제어연구단) ;
  • 박철민 (연세대학교 신소재공학과) ;
  • 김동영 (한국과학기술연구원 다원물질융합연구소 물질구조제어연구단) ;
  • 조성무 (한국과학기술연구원 다원물질융합연구소 물질구조제어연구단)
  • Received : 2012.02.17
  • Accepted : 2012.03.28
  • Published : 2012.09.25

Abstract

Polyetherimide (PEI) and poly(vinylidene fluoride) (PVdF) blend web was prepared by electrospinning technique. In order to improve low mechanical properties, post processes like hot-pressing and heat-stretching were employed, and a study on the effects of post processes on their mechanical properties was performed. To confirm the physical properties of the web, scanning electron microscopy and tensile measuring instrument were used. The mechanical strength of webs pressed in the ratios of 1/2, 1/3, 1/4 and 1/5 at $180^{\circ}C$ were improved four-to-five times compared to pristine webs. Also they showed an additional increase by 2~8MPa, by heat-stretching 30 to 40% at $220^{\circ}C$.

Polyetherimide(PEI)와 poly(vinylidene flouride)(PVdF) 폴리머들을 블렌딩하여 전기방사를 통해 웹을 제조하였다. 낮은 기계적 물성을 증대시키기 위해서 압착과 연신이라는 후처리 공정을 이용하였으며 후처리 공정이 기계적 물성에 미치는 영향을 조사하였다. 물리적 특성을 확인하기 위해 SEM, 인장 시험 측정기를 이용하여 측정하였다. $180^{\circ}C$의 압착 온도에서 1/2, 1/3, 1/4, 1/5의 비율로 압착된 웹들은 초기 상태에 비해 대략 4~5배 가량 인장 강도가 증가하였으며, 이들을 $220^{\circ}C$의 온도에서 30~40% 연신함으로써 2~8MPa의 추가적인 인장 강도 증대를 보였다.

Keywords

Acknowledgement

Supported by : 한국과학기술연구원

References

  1. S. Megelski, J. S. Stephens, D. B. Chase, and J. F. Rabolt, Macromolecules, 35, 8456 (2002). https://doi.org/10.1021/ma020444a
  2. Z. M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Compos. Sci. Technol., 63, 2223 (2003). https://doi.org/10.1016/S0266-3538(03)00178-7
  3. Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, and A. Greiner, Adv. Mater., 15, 1929 (2003). https://doi.org/10.1002/adma.200305136
  4. F. Yuan, H. Z. Chen, H. Y. Yang, H. Y. Li, and M. Wang, Mater. Chem. Phys., 89, 390 (2005). https://doi.org/10.1016/j.matchemphys.2004.09.032
  5. F. M. Reza and S. S. Naser, J. Appl. Polym. Sci., 105, 1351 (2007). https://doi.org/10.1002/app.26230
  6. S. W. Choi, J. R. Kim, S. M. Jo, W. S. Lee, and Y. R. Kim, J. Electrochem. Soc., 152, A989 (2005). https://doi.org/10.1149/1.1887166
  7. S. M. Jo and S. Y. Jang, Polymer Science and Technology, 19, 1 (2008).
  8. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, Electrochim. Acta, 50, 69 (2004). https://doi.org/10.1016/j.electacta.2004.07.014
  9. S. W. Choi, S. M. Jo, W. S. Lee, and Y. R. Kim, Adv. Mater., 15, 2027 (2003). https://doi.org/10.1002/adma.200304617
  10. J. R. Kim, S. W. Choi, S. M. Jo, W. S. Lee, and B. C. Kim, J. Electrochem. Soc., 152, A295 (2005).
  11. S. W. Lee, S. W. Choi, S. M. Jo, B. D. Chin, D. Y. Kim, and K. Y. Lee, J. Power Sources, 163, 41 (2006). https://doi.org/10.1016/j.jpowsour.2005.11.102
  12. S. W. Choi, J. R. Kim, Y. R. Ahn, S. M. Jo, and E. J. Cairns, Chem. Mater., 19, 104 (2007). https://doi.org/10.1021/cm060223+
  13. R. E. S. Rosario and G. B. Donald, Polymer, 33, 5233 (1992). https://doi.org/10.1016/0032-3861(92)90806-8
  14. S. Koombhongse, W. Liu, and D. H. Reneker, J. Polym. Sci. Polym. Phys., 39, 2598 (2001). https://doi.org/10.1002/polb.10015
  15. C. L. Casper, J. S. Stephenes, N. G. Tassi, C. D. Bruce, and J. F. Rablot, Macromolecules, 37, 573 (2004). https://doi.org/10.1021/ma0351975
  16. C. Mit-uppatham, M. Nithitanakul, and P. Supaphol, Macromol. Chem. Phys., 205, 2327 (2004). https://doi.org/10.1002/macp.200400225
  17. S. A. Theron, E. Zussman, and A. L. Yarin, Polymer, 45, 2017 (2004). https://doi.org/10.1016/j.polymer.2004.01.024
  18. G. H. Lee, I. T. Jung, S. H. Shim, and K. B. Yoon, Polymer Science and Technology, 19, 1 (2008).
  19. H. S. Kim, D. Y. Lee, Y. J. Park, and J. H. Kim, Appl. Chem., 1, 349 (1997).
  20. M. A. Repka and J. W. McGinity, Biomaterials, 21, 1509 (2000). https://doi.org/10.1016/S0142-9612(00)00046-6
  21. B. Y. Jeong, J. M. Cheon, C. S. Yoo, and J. W. Chun, J. Adhesion Interface, 9, 12 (2008).
  22. T. S. Hwang, S. G. Lee, and K. S. Cha, Polymer(Korea), 25, 774 (2001).
  23. J. H. Park, Y. T. Sung, W. N. Kim, J. H. Hong, B. K. Hong, T. W. Yoo, and H. G. Yoon, Polymer(Korea), 29, 19 (2005).

Cited by

  1. Production and characterization of polyetherimide mats by an electrospinning process vol.5, pp.11, 2018, https://doi.org/10.1088/2053-1591/aadd85