• 제목/요약/키워드: Weakly associative logic

검색결과 3건 처리시간 0.017초

약한 결합 원리를 갖는 준구조 퍼지 논리를 위한 집합 이론적 크립키형 의미론 (Set-theoretic Kripke-style Semantics for Weakly Associative Substructural Fuzzy Logics)

  • 양은석
    • 논리연구
    • /
    • 제22권1호
    • /
    • pp.25-42
    • /
    • 2019
  • 이 글에서 우리는 (곱 연언 &의) 약한 형식의 결합 원리를 갖는 준구조 퍼지 논리를 위한 집합 이론적 크립키형 의미론을 연구한다. 이를 위하여 먼저 약한 결합 원리를 갖는 세 준구조 퍼지 논리체계들을 상기한 후 이 체계들에 상응하는 크립키형 의미론을 소개한다. 다음으로 집합 이론적 방식을 이용하여 이 체계들이 완전하다는 것을 보인다.

약한 결합 원리를 갖는 퍼지 논리를 위한 대수적 크립키형 의미론 (Algebraic Kripke-Style Semantics for Weakly Associative Fuzzy Logics)

  • 양은석
    • 논리연구
    • /
    • 제21권2호
    • /
    • pp.155-174
    • /
    • 2018
  • 이 글에서 우리는 (곱 연언 &의) 약한 형식의 결합 원리를 갖는 퍼지 논리를 위한 대수적 크립키형 의미론을 연구한다. 이를 위하여 먼저 약한 결합 원리를 갖는 퍼지 논리의 대수적 의미론을 소개한다. 다음으로 이 체계들을 위한 대수적 크립키형 의미론을 제공한 후, 이를 대수적 의미론과 연관 짓는다.

약한 결합 원리를 갖는 퍼지 논리 (Weakly associative fuzzy logics)

  • 양은석
    • 논리연구
    • /
    • 제19권3호
    • /
    • pp.437-461
    • /
    • 2016
  • 이 글에서 우리는 (곱 연언 &의) 약한 형식의 결합 원리를 갖는 약화 없는 퍼지 논리를 연구한다. 이를 위하여 먼저 wta-유니놈에 기반 한 체계 $WA_tMUL$과 이의 두 공리적 확장 체계들을 약화 없는 약한 결합 원리를 갖는 퍼지 논리로 소개한다. 그리고 각 체계에 상응하는 대수적 구조를 정의한 후, 이 체계들이 대수적으로 완전하다는 것을 보인다. 다음으로 제네이-몬테그나 스타일의 구성방식을 사용하여 체계 $WA_tMUL$과 추가적 공리를 갖는 두 확장 체계들이 표준적으로 완전하다는 것을 보인다.

  • PDF