Weakly associative fuzzy logics

약한 결합 원리를 갖는 퍼지 논리

  • Yang, Eunsuk (Department of Philosophy & Institute of Critical Thinking and Writing, Chonbuk National University)
  • 양은석 (전북대학교 철학과, 비판적사고와논술연구소)
  • Received : 2016.07.06
  • Accepted : 2016.10.18
  • Published : 2016.10.31

Abstract

This paper investigates weakening-free fuzzy logics with three weak forms of associativity (of multiplicative conjunction &). First, the wta-uninorm (based) logic $WA_tMUL$ and its two axiomatic extensions are introduced as weakening-free weakly associative fuzzy logics. The algebraic structures corresponding to the systems are then defined, and algebraic completeness results for them are provided. Next, standard completeness is established for $WA_tMUL$ and the two axiomatic extensions with an additional axiom using construction in the style of Jenei-Montagna.

이 글에서 우리는 (곱 연언 &의) 약한 형식의 결합 원리를 갖는 약화 없는 퍼지 논리를 연구한다. 이를 위하여 먼저 wta-유니놈에 기반 한 체계 $WA_tMUL$과 이의 두 공리적 확장 체계들을 약화 없는 약한 결합 원리를 갖는 퍼지 논리로 소개한다. 그리고 각 체계에 상응하는 대수적 구조를 정의한 후, 이 체계들이 대수적으로 완전하다는 것을 보인다. 다음으로 제네이-몬테그나 스타일의 구성방식을 사용하여 체계 $WA_tMUL$과 추가적 공리를 갖는 두 확장 체계들이 표준적으로 완전하다는 것을 보인다.

Keywords

References

  1. Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic, 45, pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
  2. Cintula, P., Horcik, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", Review of Symbol. Logic, 12, pp. 394-423.
  3. Cintula, P., Horcik, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", Mathematical Fuzzy Logic, P. Hajek (Ed.), Springer.
  4. Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, Handbook of Mathematical Fuzzy Logic, vol 1, P. Cintula, P. Hajek, and C. Noguera (Eds.), London, College publications, pp. 103-207.
  5. Esteva, F., Gispert, L., Godo, L., and Montagna, F. (2002), "On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic", Studia Logica, 71, pp. 393-420.
  6. Esteva, F., and Godo, L. (2001), "Monoidal t-norm based logic: towards a logic for left-continous t-norms", Fuzzy Sets and Systems, 124, pp. 271-288. https://doi.org/10.1016/S0165-0114(01)00098-7
  7. Galatos, N., Jipsen, P., Kowalski, T., and Ono, H. (2007), Residuated lattices: an algebraic glimpse at substructural logics, Amsterdam, Elsevier.
  8. Gottwald, S. (2001), A Treatise on Many-valued Logics, Baldock, Research studies press LTD.
  9. Jenei, S. and Montagna, F. (2002), "A Proof of Standard completeness for Esteva and Godo's Logic MTL", Studia Logica, 70, pp. 183-192. https://doi.org/10.1023/A:1015122331293
  10. Metcalfe, G. (2004). "Uninorm Based Logics", Proceedings of EUROFUSE, 2004, Exit Press, pp. 85-99.
  11. Metcalfe, G., and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic, 72, pp. 834-864. https://doi.org/10.2178/jsl/1191333844
  12. Yager, R. R. (1994a), "Aggregation operators and fuzzy systems modeling", Fuzzy Sets and Systems, 67, pp. 129-146. https://doi.org/10.1016/0165-0114(94)90082-5
  13. Yager, R. R. (1994b), "On inference structures for fuzzy systems modeling", Proceedings of 3rd IEEE International Conference on Fuzzy Systems, Orlando, 1994, pp. 1252-1256.
  14. Yager, R. R., and Rybalov, A. (1996), "Uninorm aggregation operators", Fuzzy Sets and Systems, 80, pp. 111-120. https://doi.org/10.1016/0165-0114(95)00133-6
  15. Yang, E. (2009), "Non-associative fuzzy-relevance logics: strong t-associative monoidal uninorm logics", Korean Journal of Logic, 12/1, pp. 89-110.
  16. Yang, E. (2015), "Weakening-free, non-associative fuzzy logics: micanorm-based logics", Fuzzy Sets and Systems, 276, pp. 43-58. https://doi.org/10.1016/j.fss.2014.11.020