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Set-theoretic Kripke-style Semantics for Weakly 
Associative Substructural Fuzzy Logics*
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【Abstract】This paper deals with Kripke-style semantics, which will be called 
set-theoretic Kripke-style semantics, for weakly associative substructural fuzzy 
logics. We first recall three weakly associative substructural fuzzy logic 
systems and then introduce their corresponding Kripke-style semantics. Next, 
we provide set-theoretic completeness results for them.  
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1. Introduction

The aim of this paper is to introduce set-theoretic Kripke-style 
semantics for weakly associative substructural fuzzy logic. For 
this, we first note that Yang introduced two kinds of (binary) 
Kripke-style semantics, i.e., algebraic and non-algebraic 
Kripke-style semantics, for logics with pseudo-Boolean (briefly, pB) and 

de Morgan (briefly, dM) negations in Yang (2015b), logics with 
weak-Boolean (briefly, wB) negations, which can be regarded as 
paraconsistent logics in Yang (2014b, 2015a), and weakening-free 
non-commutative substructural fuzzy logics in Yang (2016a, 
2018b). Recently, Yang (2018a) further introduced algebraic 
Kripke-style semantics for some weakly associative substructural 
fuzzy logics. However, he did not consider set-theoretical 
semantics for them. Thus, it is not clear whether this semantics 
works for weakly associative substructural fuzzy logic systems. 
(Note that as Kripke’s works show in Kripke (1963, 1965a, 
1965b), this semantics is interesting in the sense that it can treat 
logics to which algebraic semantics cannot be applied.)

This is a tough question because Kripke-style semantics for 
well-known substructural core fuzzy logic systems are algebraic, 
but not set-theoretical. As Yang mentioned in Yang (2014a), after 
algebraic semantics for t-norm1) (based) logics were introduced, 
their corresponding algebraic Kripke-style semantics have been 
introduced. For instance, after algebraic semantics for monoidal 

1) T-norms are commutative, associative, increasing, binary functions with 
identity 1 on the real unit interval [0,1].
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t-norm (based) logics were introduced by Esteva and Godo in 
Esteva & Godo (2001), their corresponding algebraic Kripke-style 
semantics were introduced in Montagna & Ono (2002), Montagna 
& Sacchetti (2003; 2004), and Diaconescu & Georgescu (2007).2)

These facts give rise to the following question:

● Can we introduce set-theoretical Kripke-style semantics for 
weakly associative substructural fuzzy logics?

The answer to the question is positive in the sense that we 
can provide such Kripke-style semantics for the weakly associative 
substructural fuzzy logics introduced in Yang (2016b, 2018b). For 
this, first, in Section 2 we recall the wta-monoidal uninorm logic 
WAtMUL and its two axiomatic extensions and then introduce 
their corresponding Kripke-style semantics. In Section 3, using 
set-theoretic method, we provide soundness and completeness 
results for them..

For convenience, we shall adopt the notations and terminology 
similar to those in Cintula (2006), Metcalfe & Montagna (2007), 
Montagna & Sacchetti (2003; 2004), and Yang (2012; 2014a; 
2016a), and we assume reader familiarity with them (along with 
results found therein).

2) See Yang (2018b) for more examples.
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2. Weakly associative substructural fuzzy logics and 
Kripke-style semantics

Here we first briefly recall the systems introduced in Yang 
(2016b) as preliminaries. Weakly associative substructural fuzzy 
logics are based on a countable propositional language with 
formulas Fm built inductively as usual from a set of propositional 
variables VAR, binary connectives →, &, ∧, ∨, and constants T, 
F, f, t., with defined connectives:

df1. ￢φ := φ → f,
df2. φ ↔ ψ := (φ → ψ) ∧ (ψ → φ).

We may define t as f → f. We moreover define φn
t as φt & 

… & φt, n factors, where φt := φ ∧ t. For the rest of this 
paper, we use the customary notations and terminology, and the 
axiom systems to provide a consequence relation.

We start with the following axiom schemes and rules for the 
weak t-associative monoidal uninorm logic WAtMUL and its two 
axiomatic extensions.

Definition 2.1 (Yang (2016b)) 
(i) WAtMUL consists of the following axiom schemes and 

rules:
A1. φ → φ  (self-implication, SI)
A2. (φ ∧ ψ) → φ,  (φ ∧ ψ) → ψ  (∧-elimination, ∧-E)
A3. ((φ→ψ)∧(φ→χ)) → (φ→(ψ∧χ))  (∧-introduction, ∧-I)
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A4. φ → (φ ∨ ψ),  ψ → (φ ∨ ψ)  (∨-introduction, ∨-I)
A5. ((φ→χ)∧(ψ→χ)) → ((φ∨ψ)→χ)  (∨-elimination, ∨-E)
A6. F → φ  (ex falsum quodlibet, EF)
A7. (φ & ψ) → (ψ & φ)  (&-commutativity, &-C)
A8. φ ↔ (t → φ)  (push and pop, PP)
A9. φ → (ψ → (ψ & φ))  (&-adjunction, &-Adj)
A10. (φt & ψt) → (φ ∧ ψ)  (&∧)
A11. (ψ & (φ & (φ → (ψ → χ)))) → χ  (residuation, Res')
A12. (φ → ((φ&(φ → ψ)) & (ψ → χ))) → (φ → χ)  (T')
A13. ((δ&ε)→(δ&(ε&(φ→ψ)t)))∨(δ'→(ε'→((ε'&δ')&(ψ→φ)t))) 

(PL) 
A14. (φt&(ψt&χt)) ↔ ((φt&ψt)&χt) (weak t-associativity, wASt)
φ → ψ, φ ⊢ ψ (modus ponens, mp)
φ ⊢ φt  (adju) 
φ ⊢ (δ & ε) → (δ & (ε & φ)) (α) 
φ ⊢ δ → (ε → ((ε & δ) & φ)) (β).
(ii) The following are weakly associative substructural fuzzy 

logics that axiomatically extend WAtMUL:
• t-associative (ta-) monoidal uninorm logic AtMUL is 

WAtMUL plus 
(ASt) (φ & (ψ & χ))t ↔ ((φ & ψ) & χ)t;  
(REt) (φ → (ψ → χ))t ↔ ((φ & ψ) → χ)t;
(SFt) (φ → ψ)t → ((ψ → χ) → (φ → χ));  
(PFt) (ψ → χ)t → ((φ → ψ) → (φ → χ)); and  
(MTt) (φ → ψ)t → ((φ & χ) → (ψ & χ)).
• Strong ta-monoidal uninorm logic SAtMUL is AtMUL plus 
(sASt) (φt & (ψ & χ)) ↔ ((φt & ψ) & χ).
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For easy reference, we let Ls be a set of weakly associative 
substructural fuzzy logics defined previously.

Definition 2.2 Ls = {WAtMUL, AtMUL, SAtMUL}.

In L ∈  Ls, f can be defined as ￢t and vice versa.
A theory over L ∈ Ls is a set T of formulas. A proof in a 

sequence of formulas whose each member is either an axiom of 
L or a member of T or follows from some preceding members of 
the sequence using a rule of L. T ⊢ φ, more exactly T ⊢L φ, 
means that φ is provable in T w.r.t. L, i.e., there is an L-proof 
of φ in T. A theory T is inconsistent if T ⊢ F; otherwise it is 
consistent.

The deduction theorem for L is as follows:

Proposition 2.3 Let T be a theory, and φ, ψ formulas. 
(i) (Cintula, Horčík, & Noguera (2013, 2015)) T ∪ {φ} ⊢L ψ 

iff T ⊢L γ(φ) → ψ for some γ ∈ Π(bDT*).3)

(ii) (Yang (2009)) For L ∈ {AtMUL, SAtMUL}, T ∪ {φ} ⊢

L ψ iff there is n such that T ⊢L φn
t → ψ.

For convenience, “￢,” “∧,” “∨,” and “→” are used 
ambiguously as propositional connectives and as frame operators, 
but context should clarify their meanings.

Next we provide Kripke-style semantics for Ls. First, Kripke 

3) For γ and Π(bDT*), see Cintula, Horčík, & Noguera (2013; 2015) and Yang 
(2015a).
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frames are defined as follows.

Definition 2.4 (i) (Kripke frame) A Kripke frame is a structure 
X = (X, ⊤, ⊥, t, f, ≤, ＊, →) such that (X, ⊤, ⊥, t, f, ≤, 
＊, →) is a linearly ordered pointed bounded commutative 
rlu-groupoid.4) The elements of X are called nodes.

(ii) (MICAL frame) An MICAL frame is a Kripke frame, 
where ＊ is conjunctive (i.e., ⊥ ＊ ⊤ = ⊥) and left-continuous 
(i.e., whenever sup{xi : i ∈ I} exists, x ＊ sup{xi : i ∈ I} = 
sup{x ＊ xi : i ∈ I}), and so its residuum → is defined as x 
→ y := sup{z: x ＊ z ≤ y} for all x, y ∈ X.

Definition 2.5 (L frame) A WAtMUL frame is an MICAL 
frame satisfying (wASt

A’) xt * (yt * zt) = (xt * yt) * zt, for all x, 
y, z ∈ A; an AtMUL frame is an MICAL frame satisfying 
(ASt

A’) (x * (y * z))t = ((x * y) * z)t,, for all x, y, z ∈ A; and 
an SAtMUL frame is an AtMUL frame satisfying (sASt

A’) xt * (y 
* z) = (xt * y) * z, for all x, y, z ∈ A. We call all these 
frames L frames.

Definition 2.4 (ii) ensures that an MICAL frame has a 
supremum w.r.t. ＊, i.e., for every x, y ∈ X, the set {z: x ＊ z 
≤ y} has the supremum. X is said to be complete if ≤ is a 
complete order.

An evaluation or forcing on a set-theoretic Kripke frame is a 

4) For more detailed interpretation of the notations for rlu-groupoids, see Galatos 
et al. (2007).
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relation ⊩ between nodes and propositional variables, and 
arbitrary formulas subject to the conditions below: for every 
propositional variable p,

(AHC) if x ⊩ p and y ≤ x, then y ⊩ p;
(min)   ⊥ ⊩ p; and

for arbitrary formulas,

(t)   x ⊩ t  iff x ≤ t;
(f)   x ⊩ f  iff x ≤ f;
(⊥)  x ⊩ F iff x = ⊥;
(∧)  x ⊩ φ ∧ ψ = iff x ⊩ φ and x ⊩ ψ;
(∨)  x ⊩ φ ∨ ψ  iff x ⊩ φ or x ⊩ ψ;
(&)  x ⊩ φ & ψ  iff there are y, z ∈ X such that y ⊩ φ, 

z ⊩ ψ, and x ≤ y ＊ z;
(→)  x ⊩ φ → ψ iff for all y ∈ X, if y ⊩ φ, then x ＊ y 
⊩ ψ.

An evaluation or forcing on an L frame is an evaluation or 
forcing further satisfying that (max) for every atomic sentence p, 
{x : x ⊩ p} has a maximum.

Definition 2.6 (i) (Kripke model) A Kripke model is a pair 
(X, ⊩), where X is a Kripke frame and ⊩ is a forcing on X.

(ii) (L model) An L model is a pair (X, ⊩), where X is an L 
frame and ⊩ is a forcing on X. an L model (X, ⊩) is said to 
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be complete if X is a complete frame and ⊩ is a forcing on X.

Definition 2.7 Given a Kripke model (X, ⊩), a node x of X 
and a formula φ, we say that x forces φ to express x ⊩ φ. We 
say that φ is true in (X, ⊩) if t ⊩ φ, and that φ is valid in 
the frame X (expressed by X ⊨ φ) if φ is true in (X, ⊩) for 
every forcing ⊩ on X.

3. Soundness and completeness for Ls

We first introduce two lemmas, which can be easily proved:

Lemma 3.1 (Cf, Yang (2016b)) (Hereditary Lemma, HL) Let 
X be a Kripke frame. For any sentence φ and for all nodes x, y 
∈ X, if x ⊩ φ and y ≤ x, then y ⊩ φ.

Lemma 3.2 t ⊩ φ → ψ iff for all x ∈ X, if x ⊩ φ, then 
x ⊩ ψ.

We then provide soundness and completeness results for Ls.

Proposition 3.3  (Soundness, Yang (2018b)) If ⊢L φ, then φ 

is valid in every L frame.

Now we provide completeness results for Ls using 
set-theoretical Kripke-style semantics. A theory T is said to be 
linear if, for each pair φ, ψ of formulas, we have T ⊢ φ → ψ 
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or T ⊢ ψ → φ. By an L-theory, we mean a theory T closed 
under rules of L. As in relevance logic, by a regular L-theory, 
we mean an L-theory containing all of the theorems of L. Since 
we have no use of irregular theories, by an L-theory, we 
henceforth mean an L-theory containing all of the theorems of L.

Moreover, where T is a linear L-theory, we define the 
canonical L frame determined by T to be a structure X = (Xcan, 
⊤can, ⊥can, tcan, fcan, ≤can, *can), where ⊤can = {φ : T ⊢L T →
φ}, ⊥can = {φ : T ⊢L F → φ}, tcan = T,  fcan = {φ : T ⊢L f 
→ φ}, Xcan is the set of linear L-theories extending tcan, ≤can is 
⊇ restricted to Xcan, i.e, x ≤can y iff {φ : x ⊢L φ} ⊇ {φ : y 
⊢L φ}, and *can is defined as x *can y := {φ & ψ : for some φ 

∈ x, ψ ∈ y} satisfying groupoid properties corresponding to L 
frames on (Xcan, tcan, ≤can). Note that the base tcan is constructed 
as the linear L-theory that excludes nontheorems of L, i.e., 
excludes φ such that ⊬L φ. The partial orderedness and the 
linear orderedness of the canonical L frame depend on ≤can 
restricted on Xcan. Then, first, the following is obvious.

Proposition 3.4 A canonical L frame is linearly ordered.

Proof: Since ≤can is an order reversed subset relation, it is 
obvious that a canonical L frame is partially ordered. For linearly 
orderedness, suppose for contradiction that neither x ≤can y nor y 
≤can x. Then, there exist φ, ψ such that φ ∈ y, φ ∉ x, ψ ∈

x, and ψ ∉ y. Since tcan is a linear theory, we have that φ →

ψ ∈ tcan or ψ → φ ∈ tcan. Let φ → ψ ∈ tcan. Then, since φ 



Set-theoretic Kripke-style semantics for weakly associative fuzzy logics 35

→ ψ ∈ y, by (mp), we have ψ ∈ y, a contradiction. The case, 
where ψ → φ ∈ tcan, is analogous. □

Next, we define a canonical evaluation as follows:

(a) x ⊩can φ iff φ ∈ x.

We then consider the following two lemmas.

Lemma 3.5 tcan ⊩can φ → ψ iff for all x ∈ Xcan, if x ⊩can 
φ, then x ⊩can ψ.

Proof: By (a), we instead show that φ → ψ ∈ tcan iff for all 
x ∈ Xcan, if φ ∈ x, then ψ ∈ x. For the left-to-right direction, 
we assume φ → ψ ∈ tcan and φ ∈ x, and show ψ ∈ x. By 
the suppositions and the definition of *can, we have that φ & (φ 

→ ψ) ∈ x *can tcan = x. Then, since (φ & (φ → ψ)) → ψ ∈

tcan and thus (φ & (φ → ψ)) → ψ ∈ x, we also obtain that ψ 

∈ x by (mp). For the right-to-left direction, suppose 
contrapositively that φ → ψ ∉ tcan. Set x0 = {Z : there exists X 
∈ tcan and tcan ⊢ X → (φ → Z)}. Clearly, x0 ⊇ tcan, φ ∈ x0, 
and ψ ∉ x0. (Otherwise, tcan ⊢ X → (φ → ψ); therefore, tcan 
⊢ φ → ψ, a contradiction, by (mp), since tcan ⊢ X.) 

Then, by the Linear Extension Property of Theorem 12.9 in 
Cintula, Horčík, & Noguera (2015), we have a linear theory x ⊇
x0 with ψ ∉ x; therefore φ ∈ x but ψ ∉ x. □
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Lemma 3.6 (Canonical Evaluation Lemma) ⊩can is an 
evaluation.

Proof: First, consider the conditions for propositional variables.
For (AHC), we need to show that: for every propositional 

variable p,

if x ⊩can p and y ≤can x, then y ⊩can p.

Assume that x ⊩can p and y ≤can x. By (a), we have that p 
∈ x and x ⊆ y, and thus p ∈ y; therefore, y ⊩can p.

For (min), we need to show that: for every propositional 
variable p,

⊥can ⊩can p.

By (a), we need to show that p ∈ ⊥can. Since ⊥can = {φ : 
T ⊢L F → φ}, we have that p ∈ ⊥can; therefore, ⊥can ⊩can p 
by (a).

We next consider the conditions for propositional constants t, 
f, and F.

For (t), we need to show that:

x ⊩can t iff x ≤can tcan.

Since tcan = T and x is a theory extending T, we can ensure 
that t ∈ x iff x ⊇ tcan; therefore, x ⊩can t iff x ≤can tcan by 
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(a).
The proof for (f) and (⊥) is analogous to that of (t).
Now we consider the conditions for arbitrary formulas.
For (∧), we need to show

x ⊩can φ ∧ ψ iff x ⊩can φ and x ⊩can ψ.

By (a), we instead show that φ ∧ ψ ∈ x iff φ ∈ x and ψ 

∈ x. The left-to-right direction follows from (∧-E) and (mp). 
The right-to-left direction follows from (adj).

For (∨), we must show

x ⊩can φ ∨ ψ iff x ⊩can φ or x ⊩can ψ.

By (a), we instead show that φ ∨ ψ ∈ x iff φ ∈ x or ψ 

∈ x. The left-to-right direction follows from the fact that linear 
theories are also prime theories in L (see Cintula & Noguera 
(2011)). The right-to-left direction follows from (∨-I) and (mp).

For (&), we need to show

x ⊩can φ & ψ iff there are y, z ∈ X such that y ⊩can φ, z 
⊩can ψ, and x ≤can y *can z.

The definition of *can ensures that φ & ψ ∈ x iff there are 
y, z ∈ X such that φ ∈ y, ψ ∈ z, and x ≤can y *can z. Then, 
by (a), we obtain the claim. 

For (→), we need to show
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x ⊩can φ → ψ iff for all y ∈ X, if y ⊩can φ, then x *can y 
⊩can ψ.

By (a), we instead show that φ → ψ ∈ x iff for all y ∈
X, if φ ∈ y, then ψ ∈ x *can y. For the left-to-right direction, 
we assume φ → ψ ∈ x and φ ∈ y, and show ψ ∈ x *can y. 
The definition of *can ensures (φ → ψ) & φ ∈ x *can y. Since 
((φ → ψ) & φ) → ψ ∈ tcan and thus ((φ → ψ) & φ) → ψ ∈

x *can y, by (mp), we have that ψ ∈ x *can y. For the 
right-to-left direction, suppose contrapositively that φ → ψ ∉ x. 
As in Lemma 3.5, we can construct a linear theory y such that φ 

∈ y and ψ ∉ x *can y.  □ 

Let us call a model M, = (X, ⊩can) (i.e., (Xcan, ⊤can, ⊥can, 
tcan, fcan, ≤can, *can, ⊩can)), for L, an L model. Then, by Lemma 
3.6, the canonically defined (X, ⊩can) is an L model. Thus, since, 
by construction, tcan excludes our chosen nontheorem φ, and the 
canonical definition of models agrees with membership, we can 
state that, for each nontheorem φ of L, there is an L model in 
which φ is tcan ⊭L φ. It gives us the weak completeness of L as 
follows.

Theorem 3.7 (Weak completeness) If ⊨L φ, then ⊢L φ.

Furthermore, using Lemma 3.6 and the Linear Extension 
Property, we can show the strong completeness of L as follows.
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Theorem 3.8 (Strong completeness) L is strongly complete 
w.r.t. the class of all L-frames.

4. Concluding remark

Here we investigated set-theoretic Kripke-style semantics for 
some weakly associative substructural fuzzy logics. Note that, 
while Yang provided algebraic semantics for other non-associative 
substructural fuzzy logics in Yang (2015a, 2016c, 2017a, 2017b). 
he did not consider set-theoretic Kripke-style semantics for those 
systems. To provide such semantics for these logics remains a 
problem to be solved. 
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약한 결합 원리를 갖는 준구조 퍼지 논리를 위한 집합 
이론적 크립키형 의미론

양 은 석

이 글에서 우리는 (곱 연언 &의) 약한 형식의 결합 원리를 갖는 

준구조 퍼지 논리를 위한 집합 이론적 크립키형 의미론을 연구한

다. 이를 위하여 먼저 약한 결합 원리를 갖는 세 준구조 퍼지 논리 

체계들을 상기한 후 이 체계들에 상응하는 크립키형 의미론을 소개

한다. 다음으로 집합 이론적 방식을 이용하여 이 체계들이 완전하

다는 것을 보인다.

주요어: (집합 이론적) 크립키형 의미론, 관계 의미론, 퍼지 논리, 
약한 결합 원리, 준구조 논리 


