• Title/Summary/Keyword: Wavelet features

Search Result 387, Processing Time 0.022 seconds

Face Recognition using Contourlet Transform and PCA (Contourlet 변환 및 PCA에 의한 얼굴인식)

  • Song, Chang-Kyu;Kwon, Seok-Young;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.403-409
    • /
    • 2007
  • Contourlet transform is an extention of the wavelet transform in two dimensions using the multiscale and directional fillet banks. The contourlet transform has the advantages of multiscale and time-frequency-localization properties of wavelets, but also provides a high degree of directionality. In this paper, we propose a face recognition system based on fusion methods using contourlet transform and PCA. After decomposing a face image into directional subband images by contourlet, features are obtained in each subband by PCA. Finally, face recognition is performed by fusion technique that effectively combines similarities calculated respectively In each local subband. To show the effectiveness of the proposed method, we performed experiments for ORL and CBNU dataset, and then we obtained better recognition performance in comparison with the results produced by conventional methods.

Rotation and Scale Invariant Face Detection Using Log-polar Mapping and Face Features (Log-polar변환과 얼굴특징추출을 이용한 크기 및 회전불변 얼굴인식)

  • Go Gi-Young;Kim Doo-Young
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.6 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • In this paper, we propose a face recognition system by using the CCD color image. We first get the face candidate image by using YCbCr color model and adaptive skin color information. And we use it initial curve of active contour model to extract face region. We use the Eye map and mouth map using color information for extracting facial feature from the face image. To obtain center point of Log-polar image, we use extracted facial feature from the face image. In order to obtain feature vectors, we use extracted coefficients from DCT and wavelet transform. To show the validity of the proposed method, we performed a face recognition using neural network with BP learning algorithm. Experimental results show that the proposed method is robuster with higher recogntion rate than the conventional method for the rotation and scale variant.

  • PDF

Feature-Based Image Retrieval using SOM-Based R*-Tree

  • Shin, Min-Hwa;Kwon, Chang-Hee;Bae, Sang-Hyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2003.11a
    • /
    • pp.223-230
    • /
    • 2003
  • Feature-based similarity retrieval has become an important research issue in multimedia database systems. The features of multimedia data are useful for discriminating between multimedia objects (e 'g', documents, images, video, music score, etc.). For example, images are represented by their color histograms, texture vectors, and shape descriptors, and are usually high-dimensional data. The performance of conventional multidimensional data structures(e'g', R- Tree family, K-D-B tree, grid file, TV-tree) tends to deteriorate as the number of dimensions of feature vectors increases. The R*-tree is the most successful variant of the R-tree. In this paper, we propose a SOM-based R*-tree as a new indexing method for high-dimensional feature vectors.The SOM-based R*-tree combines SOM and R*-tree to achieve search performance more scalable to high dimensionalities. Self-Organizing Maps (SOMs) provide mapping from high-dimensional feature vectors onto a two dimensional space. The mapping preserves the topology of the feature vectors. The map is called a topological of the feature map, and preserves the mutual relationship (similarity) in the feature spaces of input data, clustering mutually similar feature vectors in neighboring nodes. Each node of the topological feature map holds a codebook vector. A best-matching-image-list. (BMIL) holds similar images that are closest to each codebook vector. In a topological feature map, there are empty nodes in which no image is classified. When we build an R*-tree, we use codebook vectors of topological feature map which eliminates the empty nodes that cause unnecessary disk access and degrade retrieval performance. We experimentally compare the retrieval time cost of a SOM-based R*-tree with that of an SOM and an R*-tree using color feature vectors extracted from 40, 000 images. The result show that the SOM-based R*-tree outperforms both the SOM and R*-tree due to the reduction of the number of nodes required to build R*-tree and retrieval time cost.

  • PDF

Damage Detecion of CFRP-Laminated Concrete based on a Continuous Self-Sensing Technology (셀프센싱 상시계측 기반 CFRP보강 콘크리트 구조물의 손상검색)

  • Kim, Young-Jin;Park, Seung-Hee;Jin, Kyu-Nam;Lee, Chang-Gil
    • Land and Housing Review
    • /
    • v.2 no.4
    • /
    • pp.407-413
    • /
    • 2011
  • This paper reports a novel structural health monitoring (SHM) technique for detecting de-bonding between a concrete beam and CFRP (Carbon Fiber Reinforced Polymer) sheet that is attached to the concrete surface. To achieve this, a multi-scale actuated sensing system with a self-sensing circuit using piezoelectric active sensors is applied to the CFRP laminated concrete beam structure. In this self-sensing based multi-scale actuated sensing, one scale provides a wide frequency-band structural response from the self-sensed impedance measurements and the other scale provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. To quantify the de-bonding levels, the supervised learning-based statistical pattern recognition was implemented by composing a two-dimensional (2D) plane using the damage indices extracted from the impedance and guided wave features.

Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition (자율 감지 및 확률론적 신경망 기반 패턴 인식을 이용한 배관 구조물 손상 진단 기법)

  • Lee, Chang-Gil;Park, Woong-Ki;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2011
  • In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach.

Multiple Damage Detection of Pipeline Structures Using Statistical Pattern Recognition of Self-sensed Guided Waves (자가 계측 유도 초음파의 통계적 패턴인식을 이용하는 배관 구조물의 복합 손상 진단 기법)

  • Park, Seung Hee;Kim, Dong Jin;Lee, Chang Gil
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.3
    • /
    • pp.134-141
    • /
    • 2011
  • There have been increased economic and societal demands to continuously monitor the integrity and long-term deterioration of civil infrastructures to ensure their safety and adequate performance throughout their life span. However, it is very difficult to continuously monitor the structural condition of the pipeline structures because those are placed underground and connected each other complexly, although pipeline structures are core underground infrastructures which transport primary sources. Moreover, damage can occur at several scales from micro-cracking to buckling or loose bolts in the pipeline structures. In this study, guided wave measurement can be achieved with a self-sensing circuit using a piezoelectric active sensor. In this self sensing system, a specific frequency-induced structural wavelet response is obtained from the self-sensed guided wave measurement. To classify the multiple types of structural damage, supervised learning-based statistical pattern recognition was implemented using the damage indices extracted from the guided wave features. Different types of structural damage artificially inflicted on a pipeline system were investigated to verify the effectiveness of the proposed SHM approach.

Radiomics Analysis of Gray-Scale Ultrasonographic Images of Papillary Thyroid Carcinoma > 1 cm: Potential Biomarker for the Prediction of Lymph Node Metastasis (Radiomics를 이용한 1 cm 이상의 갑상선 유두암의 초음파 영상 분석: 림프절 전이 예측을 위한 잠재적인 바이오마커)

  • Hyun Jung Chung;Kyunghwa Han;Eunjung Lee;Jung Hyun Yoon;Vivian Youngjean Park;Minah Lee;Eun Cho;Jin Young Kwak
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.185-196
    • /
    • 2023
  • Purpose This study aimed to investigate radiomics analysis of ultrasonographic images to develop a potential biomarker for predicting lymph node metastasis in papillary thyroid carcinoma (PTC) patients. Materials and Methods This study included 431 PTC patients from August 2013 to May 2014 and classified them into the training and validation sets. A total of 730 radiomics features, including texture matrices of gray-level co-occurrence matrix and gray-level run-length matrix and single-level discrete two-dimensional wavelet transform and other functions, were obtained. The least absolute shrinkage and selection operator method was used for selecting the most predictive features in the training data set. Results Lymph node metastasis was associated with the radiomics score (p < 0.001). It was also associated with other clinical variables such as young age (p = 0.007) and large tumor size (p = 0.007). The area under the receiver operating characteristic curve was 0.687 (95% confidence interval: 0.616-0.759) for the training set and 0.650 (95% confidence interval: 0.575-0.726) for the validation set. Conclusion This study showed the potential of ultrasonography-based radiomics to predict cervical lymph node metastasis in patients with PTC; thus, ultrasonography-based radiomics can act as a biomarker for PTC.