• Title/Summary/Keyword: Wavelet coefficient set

Search Result 13, Processing Time 0.026 seconds

Classification of Arrhythmia Based on Discrete Wavelet Transform and Rough Set Theory

  • Kim, M.J.;J.-S. Han;Park, K.H.;W.C. Bang;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.5-28
    • /
    • 2001
  • This paper investigates a classification method of the electrocardiogram (ECG) into different disease categories. The features for the classification of the ECG are the coefficients of the discrete wavelet transform (DWT) of ECG signals. The coefficients are calculated with Haar wavelet, and after DWT we can get 64 coefficients. Each coefficient has morphological information and they may be good features when conventional time-domain features are not available. Since all of them are not meaningful, it is needed to reduce the size of meaningful coefficients set. The distributions of each coefficient can be the rules to classify ECG signal. The optimally reduced feature set is obtained by fuzzy c-means algorithm and rough set theory. First, the each coefficient is clustered by fuzzy c-means algorithm and the clustered ...

  • PDF

Comparisons and Examinations of Social Enterprises in Korea and Japan

  • Chung, sung bum
    • Journal of the Korea society of information convergence
    • /
    • v.5 no.2
    • /
    • pp.101-108
    • /
    • 2012
  • In the present paper, it removed the low frequency noise under 1Hz which get up base wandering from the various noise which is included in ECG signals. It used wavelet filter, FIR filter and Adaptive FIR filter and compared the efficiency of the filter. The set condition of 3 kind filters which are the comparative object is the next contents. Used wavelet case, used generating functions db7 and after decomposition, the low frequency of 8 phases (cA8) replaced at 0. FIR filter case, filter coefficient set 1400, cutoff frequency (${\omega}$) set 0.002. Adaptive FIR filter case, collecting coefficients (${\mu}$) with 0.005. The comparative result from the output wave shape and FT spectrum, wavelet is excellent in base wandering removals compared FIR filter and Adaptive FIR filter. And SNR comparisons, wavelet filter(44.16) is high compare with other two filters(25.19 and 15.94).

  • PDF

Classification of the PVC Using The Fuzzy-ART Network Based on Wavelet Coefficient (웨이브렛 계수에 근거한 Fuzzy-ART 네트워크를 이용한 PVC 분류)

  • Park, K. L;Lee, K. J.;lee, Y. S.;Yoon, H. R.
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.435-442
    • /
    • 1999
  • A fuzzy-ART(adaptive resonance theory) network for the PVC(premature ventricular contraction) classification using wavelet coefficient is designed. This network consists of the feature extraction and learning of the fuzzy-ART network. In the first step, we have detected the QRS from the ECG signal in order to set the threshold range for feature extraction and the detected QRS was divided into several frequency bands by wavelet transformation using Haar wavelet. Among the low-frequency bands, only the 6th coefficient(D6) are selected as the input feature. After that, the fuzzy-ART network for classification of the PVC is learned by using input feature which comprises of binary data converted by applying threshold to D6. The MIT/BIH database including the PVC is used for the evaluation. The designed fuzzy-ART network showed the PVC classification ratio of 96.52%.

  • PDF

Adaptive Noise Reduction of Speech Using Wavelet Transform (웨이브렛 변환을 이용한 음성의 적응 잡음 제거)

  • Lee, Chang-Ki;Kim, Dae-Ik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.190-196
    • /
    • 2009
  • A new time adapted threshold using the standard deviations of Wavelet coefficients after Wavelet transform by frame scale is proposed. The time adapted threshold is set up using the sum of standard deviations of Wavelet coefficient in level 3 approximation and weighted level 1 detail. Level 3 approximation coefficients represent the voiced sound with low frequency and level 1 detail coefficients represent the unvoiced sound with high frequency. After reducing noise by soft thresholding with the proposed time adapted threshold, there are still residual noises in silent interval. To reduce residual noises in silent interval, a detection algorithm of silent interval is proposed. From simulation results, it can be noticed that SNR and MSE of the proposed algorithm are improved than those of Wavelet transform and than those of Wavelet packet transform.

  • PDF

HIERARCHICAL STILL IMAGE CODING USING MODIFIED GOLOMB-RICE CODE FOR MEDICAL IMAGE INFORMATION SYSTEM

  • Masayuki Hashimoto;Atsushi Koike;Shuichi Matsumoto
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.97.1-102
    • /
    • 1999
  • This paper porposes and efficient coding scheme for remote medical communication systems, or“telemedicine systems”. These systems require a technique which is able to transfer large volume of data such as X-ray images effectively. We have already developed a hierarchical image coding and transmission scheme (HITS), which achieves an efficient transmission of medical images simply[1]. In this paper, a new coding scheme for HITS is proposed, which used hierarchical context modeling for the purpose of improving the coding efficiency. The hierarchical context modeling divides wavelet coefficients into several sets by the value of a correspondent coefficient in their higher class, or“a parent”, optimizes a Golomb-Rice (GR) code parameter in each set, and then encodes the coefficients with the parameter. Computer simulation shows that the proposed scheme is effective with simple implementation. This is due to fact that a wavelet coefficient has dependence on its parent. As a result, high speed data transmission is achieved even if the telemedicine system consists of simple personal computers.

Adaptive Noise Reduction of Speech using Wavelet Transform (웨이브렛 변환을 이용한 음성의 적응 잡음 제거)

  • Im Hyung-kyu;Kim Cheol-su
    • Journal of the Korea Computer Industry Society
    • /
    • v.6 no.2
    • /
    • pp.271-278
    • /
    • 2005
  • This paper proposed a new time adapted threshold using the standard deviations of Wavelet coefficients after Wavelet transform by frame scale. The time adapted threshold is set up using the sum of standard deviations of Wavelet coefficient in level 3 approximation and weighted level 1 detail. Level 3 approximation coefficients represent the voiced sound with low frequency and level 1 detail coefficients represent the unvoiced sound with high frequency. After reducing noise by soft thresholding with the proposed time adapted threshold, there are still residual noises in silent interval. To reduce residual noises in silent interval, a detection algorithm of silent interval is proposed. From simulation results, it is demonstrated that the proposed algorithm improves SNR and MSE performance more than Wavelet transform and Wavelet packet transform does.

  • PDF

Adaptive Noise Reduction using Standard Deviation of Wavelet Coefficients in Speech Signal (웨이브렛 계수의 표준편차를 이용한 음성신호의 적응 잡음 제거)

  • 황향자;정광일;이상태;김종교
    • Science of Emotion and Sensibility
    • /
    • v.7 no.2
    • /
    • pp.141-148
    • /
    • 2004
  • This paper proposed a new time adapted threshold using the standard deviations of Wavelet coefficients after Wavelet transform by frame scale. The time adapted threshold is set up using the sum of standard deviations of Wavelet coefficient in cA3 and weighted cDl. cA3 coefficients represent the voiced sound with low frequency and cDl coefficients represent the unvoiced sound with high frequency. From simulation results, it is demonstrated that the proposed algorithm improves SNR and MSE performance more than Wavelet transform and Wavelet packet transform does. Moreover, the reconstructed signals by the proposed algorithm resemble the original signal in terms of plosive sound, fricative sound and affricate sound but Wavelet transform and Wavelet packet transform reduce those sounds seriously.

  • PDF

Feature Extraction Algorithm for Underwater Transient Signal Using Cepstral Coefficients Based on Wavelet Packet (웨이브렛 패킷 기반 캡스트럼 계수를 이용한 수중 천이신호 특징 추출 알고리즘)

  • Kim, Juho;Paeng, Dong-Guk;Lee, Chong Hyun;Lee, Seung Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.6
    • /
    • pp.552-559
    • /
    • 2014
  • In general, the number of underwater transient signals is very limited for research on automatic recognition. Data-dependent feature extraction is one of the most effective methods in this case. Therefore, we suggest WPCC (Wavelet packet ceptsral coefficient) as a feature extraction method. A wavelet packet best tree for each data set is formed using an entropy-based cost function. Then, every terminal node of the best trees is counted to build a common wavelet best tree. It corresponds to flexible and non-uniform filter bank reflecting characteristics for the data set. A GMM (Gaussian mixture model) is used to classify five classes of underwater transient data sets. The error rate of the WPCC is compared using MFCC (Mel-frequency ceptsral coefficients). The error rates of WPCC-db20, db40, and MFCC are 0.4%, 0%, and 0.4%, respectively, when the training data consist of six out of the nine pieces of data in each class. However, WPCC-db20 and db40 show rates of 2.98% and 1.20%, respectively, while MFCC shows a rate of 7.14% when the training data consists of only three pieces. This shows that WPCC is less sensitive to the number of training data pieces than MFCC. Thus, it could be a more appropriate method for underwater transient recognition. These results may be helpful to develop an automatic recognition system for an underwater transient signal.

Visualization of Motor Unit Activities in a Single-channel Surface EMG Signal

  • Hidetoshi Nagai
    • International journal of advanced smart convergence
    • /
    • v.12 no.3
    • /
    • pp.211-220
    • /
    • 2023
  • Surface electromyography (sEMG) is a noninvasive method used to capture electrically muscle activity, which can be easily measured even during exercise. The basic unit of muscle activity is the motor unit, and because an sEMG signal is a superposition of motor unit action potentials, analysis of muscle activity using sEMG should ideally be done from the perspective of motor unit activity. However, conventional techniques can only evaluate sEMG signals based on abstract signal features, such as root-mean-square (RMS) and mean-power-frequency (MPF), and cannot detect individual motor unit activities from an sEMG signal. On the other hand, needle EMG can only capture the activity of a few local motor units, making it extremely difficult to grasp the activity of the entire muscle. Therefore, in this study, a method to visualize the activities of motor units in a single-channel sEMG signal by relocating wavelet coefficients obtained by redundant discrete wavelet analysis is proposed. The information obtained through this method resides in between the information obtained through needle EMG and the information obtained through sEMG using conventional techniques.

Experimental and numerical validation of guided wave based on time-reversal for evaluating grouting defects of multi-interface sleeve

  • Jiahe Liu;Li Tang;Dongsheng Li;Wei Shen
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.41-53
    • /
    • 2024
  • Grouting sleeves are an essential connecting component of prefabricated components, and the quality of grouting has a significant influence on structural integrity and seismic performance. The embedded grouting sleeve (EGS)'s grouting defects are highly undetectable and random, and no effective monitoring method exists. This paper proposes an ultrasonic guided wave method and provides a set of guidelines for selecting the optimal frequency and suitable period for the EGS. The optimal frequency was determined by considering the group velocity, wave structure, and wave attenuation of the selected mode. Guided waves are prone to multi-modality, modal conversion, energy leakage, and dispersion in the EGS, which is a multi-layer structure. Therefore, a time-reversal (TR)-based multi-mode focusing and dispersion automatic compensation technology is introduced to eliminate the multi-mode phase difference in the EGS. First, the influence of defects on guided waves is analyzed according to the TR coefficient. Second, two major types of damage indicators, namely, the time domain and the wavelet packet energy, are constructed according to the influence method. The constructed wavelet packet energy indicator is more sensitive to the changes of defecting than the conventional time-domain similarity indicator. Both numerical and experimental results show that the proposed method is feasible and beneficial for the detection and quantitative estimation of the grouting defects of the EGS.