• Title/Summary/Keyword: Wavelet Coefficients

Search Result 548, Processing Time 0.035 seconds

Wavelet-based Biomedical Signal Compression Using a Multi-stage Vector Quantization (다단계 벡터 양자화를 이용한 웨이브렛 기반 생체 신호 압축)

  • Park, Seo-Young;Kim, Young-Ju;Lee, In-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.343-344
    • /
    • 2006
  • In this paper, the biomedical signal compression method with multi-stage vector quantization is proposed. It utilizes characteristic of wavelet coefficients in which the energy is concentrated on approximation coefficients. The transmitted codebook index consists code vectors obtained by wavelet coefficients of ECG and Error signals from the 1024 block length, respectively. The proposed compression method showed 2.1298% in average PRD and 1.8 kbits/sec in CDR.

  • PDF

Wavelet-Based Variable Block Size Fractal Image Coding (웨이브렛 기반 가변 블록 크기 플랙탈 영상 부호화)

  • 문영숙;전병민
    • Journal of Broadcast Engineering
    • /
    • v.4 no.2
    • /
    • pp.127-133
    • /
    • 1999
  • The conventional fractal image compression based on discrete wavelet transform uses the fixed block size in fractal coding and reduces PSNR at low bit rate. This paper proposes a fractal image coding based on discrete wavelet transform which improves PSNR by using variable block size in fractal coding. In the proposed method. the absolute values of discrete wavelet transform coefficients are computed. and the discrete wavelet transform coefficients of different highpass subbands corresponding to the same spatial block are assembled. and the fractal code for the range block of each range block level is assigned. and then a decision tree C. the set of choices among fractal coding. "0" encoding. and scalar quantization is generated and a set of scalar quantizers q is chosen. And then the wavelet coefficients. fractal codes. and the choice items in the decision tree are entropy coded by using an adaptive arithmetic coder. This proposed method improved PSNR at low bit rate and could achieve a blockless reconstructed image. As the results of experiment. the proposed method obtained better PSNR and higher compression ratio than the conventional fractal coding method and wavelet transform coding.rm coding.

  • PDF

Semi-Fragile Image Watermarking for Authentication Using Wavelet Packet Transform Based on The Subband Energy (부대역 에너지 기반 웨이블릿 패킷 변환을 이용한 인증을 위한 세미 프레자일 영상 워터마킹)

  • Park, Sang-Ju;Kwon, Tae-Hyeon
    • The KIPS Transactions:PartB
    • /
    • v.12B no.4 s.100
    • /
    • pp.421-428
    • /
    • 2005
  • A new method of Semi-fragile image watermarking which ensures the integrity of the contents of digital image is presented. Proposed watermarking scheme embeds watermark in the form of quantization noise on the wavelet transform coefficients in a specific mid frequency subbands selected from a wavelet packet decomposition based on energy distribution of wavelet transform coefficients. By controlling the strength of embedded watermark using HVS (Human Visual System) characteristic, it is imperceptible by a human viewer while robust against non-malicious attack such as compression for storage and/or transmission. When an attack is applied on the original image, it is highly probable that wavelet transform coefficients not only at the exact attack positions but also the neighboring ones are modified. Therefore, proposed authentication method utilizes whether both current coefficient and its neighbors are damaged. together. So it can efficiently detect and accurately localize attacks inflicted on the content of original image. Decision threshold for authentication can be user controlled for different application areas as needed.

A Study of Shorted-Turn Detection in the Cylindrical Synchronous Generator Rotor Windings via Discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 동기발전기 회전자 층간단락 진단에 관한 연구)

  • Kim, Jang-Mok;Kim, Young-Jun;Ahan, Jin-Woo;Kim, Heung-Geun;Jung, Tae-Uk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.6
    • /
    • pp.570-576
    • /
    • 2006
  • This paper describes a method for the detection of shorted-turn in the cylindrical synchronous generator rotor windings based on the discrete wavelet transform. Multi-resolution analysis(MRA) based on discrete wavelet transform provides a set of decomposed signals in independent frequency bands, which contain independent dynamic information due to the orthogonality of wavelet function. In the proposed method, shorted-turn detection in rotor windings is based on the decomposition of the rotor currents, where wavelet coefficients of these signals have been extracted. Comparing these extracted coefficients is used for diagnosing the healthy machine from faulty machine. Experimental results are presented for healthy, and machines with 25%, 42%, 67%, 83%, 99% inter-turn short circuits in a rotor slot. Deviation of wavelet coefficients in healthy mode from faulty modes depicts the inverse proportion of shorted-turns. Experimental results show the effectiveness of the proposed method for shorted-turn detection in the cylindrical synchronous generator rotor windings.

Morphological Clustering Filter for Wavelet Shrinkage Improvement

  • Jinsung Oh;Heesoo Hwang;Lee, Changhoon;Kim, Younam
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.3
    • /
    • pp.390-394
    • /
    • 2003
  • To classify the significant wavelet coefficients into edge area and noise area, a morphological clustering filter applied to wavelet shrinkage is introduced. New methods for wavelet shrinkage using morphological clustering filter are used in noise removal, and the performance is evaluated under various noise conditions.

Noise-free Distributions Comparison of Bayesian Wavelet Threshold for Image Denoise

  • Choi, Ilsu;Rhee, Sung-Suk;Ahn, Yunkee
    • Communications for Statistical Applications and Methods
    • /
    • v.8 no.2
    • /
    • pp.573-579
    • /
    • 2001
  • Wavelet thresholding is a method for he reduction of noise in image. Wavelet coefficients of image are correlated in local characterization. Thee correlations also appear in he original pixel representation of the image, and they do not follow from the characterizations of the wavelet transform. In this paper, we compare noise-free distributions of Bayes approach to improve the classical threshold algorithm.

  • PDF

CONSTRUCTIVE WAVELET COEFFICIENTS MEASURING SMOOTHNESS THROUGH BOX SPLINES

  • Kim, Dai-Gyoung
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.955-982
    • /
    • 1996
  • In surface compression applications, one of the main issues is how to efficiently store and calculate the computer representation of certain surfaces. This leads us to consider a nonlinear approximation by box splines with free knots since, for instance, the nonlinear method based on wavelet decomposition gives efficient compression and recovery algorithms for such surfaces (cf. [12]).

  • PDF

Image Interpolation Using Linear Modeling for the Absolute Values of Wavelet Coefficients Across Scale (스케일간 웨이블릿 계수 절대치의 선형 모델링을 이용한 영상 보간)

  • Kim Sang-Soo;Eom Il-Kyu;Kim Yoo-Shin
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.19-26
    • /
    • 2005
  • Image interpolation in the wavelet domain usually takes advantage of the probabilistic models for the intrascale statistics and the interscale dependency. In this paper, we adopt the linear model for the absolute values of wavelet coefficients of interpolated image across scale to estimate the variances of extrapolated bands. The proposed algorithm uses randomly generated wavelet coefficients based on the estimated parameters for probabilistic model. Random number generation according to the estimated probabilistic model may induce the 'salt and pepper' noise in subbands. We reduce the noise power by Wiener filtering. We observe that the proposed method generates the histogram of the subband coefficients similar to the that of original image. Experimental results show that our method outperforms the previous wavelet-domain interpolation method as well as the conventional bicubic method.

HARMONIC WAVELET TRANSFORM FOR MINIMIZING RELATIVE ERRORS IN SENSOR DATA APPROXIMATION

  • Kang Seonggoo;Yang Seunghoon;Lee Sukho;Park Sanghyun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.276-279
    • /
    • 2005
  • As the Ubiquitous generation approaches, the importance of the sensor data processing is growing. The data approximation scheme, one of the data processing methods, can be the key of sensor data processing, for it is related not only to the lifetime of sensors but also to the size of the storage. In this paper, we propose the Harmonic Wavelet transform which can minimize the relative error for given sensor data. Harmonic Wavelets use the harmonic mean as a representative which is the minimum point of the maximum relative error between two data values. In addition, Harmonic Wavelets retain the relative errors as wavelet coefficients so we can select proper wavelet coefficients that reduce the relative error more easily. We also adapt the greedy algorithm for local optimization to reduce the time complexity. Experimental results show the performance and the scalability of Harmonic Wavelets for sensor data.

  • PDF