• Title/Summary/Keyword: Wavelength Swept Laser

Search Result 40, Processing Time 0.029 seconds

K-domain Linearization Using Fiber Bragg Grating Array Based on Fourier Domain Optical Coherence Tomography (광섬유 브라그 격자를 이용한 퓨리어 영역 광 결맞음 단층 촬영에서의 파수영역 선형화)

  • Lee, Byoung-Chang;Eom, Tae-Joong;Jeon, Min-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.2
    • /
    • pp.72-76
    • /
    • 2011
  • We demonstrate a k-domain linearization using a fiber Bragg grating (FBG) array for Fourier domain optical coherence tomography based on a wavelength swept laser. The k-domain linearization is carried out with an interpolation method using a FBG array with five FBGs. The measured signal-to-noise ratio from the point spread function after k-domain linearization is 12 dB improved over that of without k-domain linearization at the 1 mm depth of the sample. Clear OCT imaging of the slide glass with k-domain linearization could be obtained.

Trends in Wavelength-Tunable Laser Development and Applications (파장가변 광원 개발 동향 및 응용)

  • O.K. Kwon;K.S. Kim;Y.-H. Kwon
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.1
    • /
    • pp.48-61
    • /
    • 2024
  • The integration of high-capacity terrestrial networks with non-terrestrial communication using satellites has become essential to support seamless low-latency services based on artificial intelligence and big data. Tunable light sources have been instrumental in resolving the complexity of channel management in wavelength division multiplexing (WDM) systems, contributing to increased network flexibility and serving as optical sources for long-distance coherent systems. Recently, these light sources have been applied to beam-steering devices in laser communication and sensing applications across ground, aerial, and satellite transport. We examine the utilization and requirements of tunable lasers in WDM networks and describe the relevant development status. In addition, performance requirements and development directions for tunable lasers used in optical interference systems and beam-steering devices are reviewed.

Papers : Simultaneous Measurement of Strain , Temperature , and Vibration Using Fiber Optic Sensor (논문 : 광섬유 센서를 이용한 변형률, 온도, 진동의 동시 측정)

  • Gang,Hyeon-Gyu;Bang,Hyeong-Jun;Hong,Chang-Seon;Kim,Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.44-48
    • /
    • 2002
  • In this paper, we demonstrated the simultaneous measurment of triple parameters such as strain, temperature, and vibration using single FBG/EFPI hybrid sensor. The FBG/EFPI sensor system for the strain and temperature measurement and the EFPI sensor system for the the vibration measurement were combined by a wavelength division multiplexer. The optical source of FBG/ EFPI sensor system is a wavelength-swept fiber laser(WSFL) and that of an EFPI sensor system is a laser diode. We performed the simultaneous measurement of thermal strain, temperature, and vibration of a aluminum beam placed in a thermal chamber and validated the efficiency of the constructed measurment system.

Real Time Linux System Design (리얼 타임 리눅스 시스템 설계)

  • Lee, Ah Ri;Hong, Seon Hack
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.13-20
    • /
    • 2014
  • In this paper, we implemented the object scanning with nxtOSEK which is an open source platform. nxtOSEK consists of device driver of leJOS NXJ C/Assembly source code, TOPPERS/ATK(Automotive real time Kernel) and TOPPERS/JSP Real-Time Operating System source code that includes ARM7 specific porting part, and glue code make them work together. nxtOSEK can provide ANSI C by using GCC tool chain and C API and apply for real-time multi tasking features. We experimented the 3D scanning with ultra sonic and laser sensor which are made directly by laser module diode and experimented the measurement of scanning the object by knowing x, y, and z coordinates for every points that it scans. In this paper, the laser module is the dimension of $6{\times}10[mm]$ requiring 5volts/5[mW], and used the laser light of wavelength in the 650[nm] range. For detecting the object, we used the beacon detection algorithm and as the laser light swept the objects, the photodiode monitored the ambient light at interval of 10[ms] which is called a real time. We communicated the 3D scanning platform via bluetooth protocol with host platform and the results are displayed via DPlot graphic tool. And therefore we enhanced the functionality of the 3D scanner for identifying the image scanning with laser sensor modules compared to ultra sonic sensor.

Measurement of Transverse Strain Using Polarization Maintaining Fiber Bragg Grating Sensor (편광 유지 광섬유 브래그 격자 센서를 이용한 횡방향 변형률 측정)

  • Yoon, Hyuk-Jin;Kim, Dae-Hyun;Hong, Chang-Sun;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.30-35
    • /
    • 2003
  • In this paper, the transverse strain was measured using polarization maintaining fiber Bragg grating(PMFBG) sensor. PMFBG sensor was fabricated using phase mask and Excidmer laser. The reflected wavelength of PMFBG sensor had dual peaks due to intrinsic birefringence. To find the polarization axes, peak sensitivity was measured under compression test. The signal characteristics of PMFBG sensor were also examined in embedding condition. The embedded PMFBG sensor in epoxy block was loaded for the transverse strain measurement, The wavelength-swept fiber laser(WSFL) was used to construct the PMFBG sensor system. Experiments showed that the PMFBG sensor could successfully measure the transverse strain.

Integrated Cavity Output Spectroscopy Using an External Cavity Diode Laser for the Density Absorption Measurement of Trace Gases (미량 기체의 밀도 측정을 위한 외부 공진기 반도체 레이저 광학공동 적분 투과 분광법)

  • Ryoo Hoon Chul;Yoo Yong Shin;Lee Jae Yong;Hahn Jae Won
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • Integrated cavity output spectroscopy(ICOS) is a simple, non-intrusive absorption measurement technique that can detect and quantify trace-level gas species. The spectral absorbance of a gas is quantified from the integrated optical output of the modulated high-finesse cavity containing the sample which is irradiated by a wavelength-swept laser source. We constructed an experimental setup by using a tunable single mode external cavity diode laser operating at the wavelength near 765 nm and a Fabry-Perot cavity with length modulation achieved by a piezoelectric transducer where one of the cavity mirrors sat on. In the experiment performed on minute oxygen gas at the wave-length near 764.5nm, we demonstrated the minimum detectable absorption of $8.45\times10^{-8}cm^{-1}$.

Simultaneous Measurement of Strain and Temperature During and After Cure of Unsymmetric Composite Laminate Using Fiber Optic Sensors (비대칭 복합적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 측정)

  • 강동훈;강현규;김대현;방형준;홍창선;김천곤
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.244-249
    • /
    • 2001
  • In this paper, we present the simultaneous measurement of the fabricaition strain and temperature during and after cure of unsymmetric composite laminate uising fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPl) hybrid sensors are used to measure those measurands. The characteristic matrix of sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilized as a light source. FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate at different direction and different location. We perform the real time measurement of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.

  • PDF

Optical Imaging Technology for Real-time Tumor Monitoring

  • Shin, Yoo-kyoung;Eom, Joo Beom
    • Medical Lasers
    • /
    • v.10 no.3
    • /
    • pp.123-131
    • /
    • 2021
  • Optical imaging modalities with properties of real-time, non-invasive, in vivo, and high resolution for image-guided surgery have been widely studied. In this review, we introduce two optical imaging systems, that could be the core of image-guided surgery and introduce the system configuration, implementation, and operation methods. First, we introduce the optical coherence tomography (OCT) system implemented by our research group. This system is implemented based on a swept-source, and the system has an axial resolution of 11 ㎛ and a lateral resolution of 22 ㎛. Second, we introduce a fluorescence imaging system. The fluorescence imaging system was implemented based on the absorption and fluorescence wavelength of indocyanine green (ICG), with a light-emitting diode (LED) light source. To confirm the performance of the two imaging systems, human malignant melanoma cells were injected into BALB/c nude mice to create a xenograft model and using this, OCT images of cancer and pathological slide images were compared. In addition, in a mouse model, an intravenous injection of indocyanine green was used with a fluorescence imaging system to detect real-time images moving along blood vessels and to detect sentinel lymph nodes, which could be very important for cancer staging. Finally, polarization-sensitive OCT to find the boundaries of cancer in real-time and real-time image-guided surgery using a developed contrast agent and fluorescence imaging system were introduced.

Papers : Simultaneous Monitoring of Strain and Temperature During and After Cure of Unsymmetric Cross - ply Composite Laminate Using Fiber Optic Sensors (논문 : 비대칭 직교적층 복합재료 적층판의 성형시 및 성형후 광섬유 센서를 이용한 변형률 및 온도의 동시 모니터링)

  • Gang,Hyeon-Gyu;Gang,Dong-Hun;Hong,Chang-Seon;Kim,Cheon-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • In this paper, we present the simulation monitoring of strain and temperature during and after the cure of unsymmetric composite laminate using fiber optic sensors. Fiber Bragg grating/extrinsic Fabry-Perot interferometric (FBG/EFPI) hybrid sensors are used to measure those measurands. The characteristic matrix of the sensor is analytically derived and measurements can be done without sensor calibration. A wavelength-swept fiber laser is utilised as a lighr source. Two FBG/EFPI sensors are embedded in a graphite/epoxy unsymmetric cross-ply composite laminate in different directions and different locations. We perform a real time monitoring of fabrication strains and temperatures at two points of the composite laminate during cure process in an autoclave. Also, the thermal strains and temperatures of the fabricated laminate are measured in a thermal chamber. Through these experiments, we can provide a basis for the efficient smart processing of composite and know the thermal behavior of unsymmetric cross-ply composite laminate.