• 제목/요약/키워드: Waveguide sensitivity

검색결과 60건 처리시간 0.02초

Computational analysis of the effect of SOI vertical slot optical waveguide specifications on integrated-optic biochemical waveguide wensitivity

  • Jung, Hongsik
    • 센서학회지
    • /
    • 제30권6호
    • /
    • pp.395-407
    • /
    • 2021
  • The effect of the specifications of a silicon-on-insulator vertical slot optical waveguide on the sensitivity of homogeneous and surface sensing configurations for TE and TM polarization, respectively, was systematically analyzed using numerical software. The specifications were optimized based on the confinement factor and transmission power of the TE-guided mode distributed in the slot. The waveguide sensitivities of homogeneous and surface sensing were calculated according to the specifications of the optimized slot optical waveguide.

Midinfrared Refractive-index Sensor with High Sensitivity Based on an Optimized Photonic Crystal Coupled-cavity Waveguide

  • Han, Shengkang;Wu, Hong;Zhang, Hua;Yang, Zhihong
    • Current Optics and Photonics
    • /
    • 제5권4호
    • /
    • pp.444-449
    • /
    • 2021
  • A photonic crystal coupled-cavity waveguide created on silicon-on-insulator is designed to act as a refractive-index-sensing device at midinfrared wavelengths around 4 ㎛. To realize high sensitivity, effort is made to engineer the structural parameters to obtain strong modal confinement, which can enhance the interaction between the resonance modes and the analyzed sample. By adjusting some parameters, including the shape of the cavity, the width of the coupling cavity, and the size of the surrounding dielectric columns, a high-sensitivity refractive-index sensor based on the optimized photonic crystal coupled-cavity waveguide is proposed, and a sensitivity of approximately 2620 nm/RIU obtained. When an analyte is measured in the range of 1.0-1.4, the sensor can always maintain a high sensitivity of greater than 2400 nm/RIU. This work demonstrates the viability of high-sensitivity photonic crystal waveguide devices in the midinfrared band.

High Sensitive Fiber Optic Temperature Sensor Based on a Side-polished Single-mode Fiber Coupled to a Tapered Multimode Overlay Waveguide

  • Prerana, Prerana;Varshney, Ravendra Kumar;Pal, Bishnu Pada;Nagaraju, Bezwada
    • Journal of the Optical Society of Korea
    • /
    • 제14권4호
    • /
    • pp.337-341
    • /
    • 2010
  • A high sensitivity fiber optic temperature sensor based on a side-polished fiber (SPF) coupled to a tapered multimode overlay waveguide (MMOW) is proposed and studied. Both tapered and non-tapered MMOW were considered to study the effect of tapering of MMOW on the characteristics of the device and to investigate the criticality of the uniformity of the multimode overlay waveguide over the SPF. Present study shows that tapering of the MMOW can be used to tune the desired wavelength range without any loss in the sensitivity. Sensitivity up to 9 nm/$^{\circ}C$ within the temperature range of 25 to $100^{\circ}C$ can be achieved with the proposed sensor, almost 6 times higher compared even to state-of-the-art high-sensitivity grating-based fiber optic temperature sensors.

이산화탄소 검출을 위한 고감도 비분산 적외선 가스센서의 광도파관 구조 설계 (Optical waveguide structure design of Non-dispersive Infrared (NDIR) CO2 gas sensor for high-sensitivity)

  • 윤지영;이준엽;도남곤;정대웅
    • 센서학회지
    • /
    • 제30권5호
    • /
    • pp.331-336
    • /
    • 2021
  • The Non-dispersive Infrared (NDIR) gas sensor has high selectivity, measurement reliability, and long lifespan. Thus, even though the NDIR gas sensor is expensive, it is still widely used for carbon dioxide (CO2) detection. In this study, to reduce the cost of the NDIR CO2 gas sensor, we proposed the new optical waveguide structure design based on ready-made gas pipes that can improve the sensitivity by increasing the initial light intensity. The new optical waveguide design is a structure in which a part of the optical waveguide filter is inclined to increase the transmittance of the filter, and a parabolic mirror is installed at the rear end of the filter to focus the infrared rays passing through the filter to the detector. In order to examine the output characteristics of the new optical waveguide structure design, optical simulation was performed for two types of IR-source. As a result, the new optical waveguide structure can improve the sensitivity of the NDIR CO2 gas sensor by making the infrared rays perpendicular to the filter, increasing the filter transmittance.

Narrow Resonant Double-Ridged Rectangular Waveguide Probe for Near-Field Scanning Microwave Microscopy

  • Kim, Byung-Mun;Son, Hyeok-Woo;Cho, Young-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.406-412
    • /
    • 2018
  • In this paper, we propose a narrow resonant waveguide probe that can improve the measurement sensitivity in near-field scanning microwave microscopy. The probe consists of a metal waveguide incorporating the following two sections: a straight section at the tip of the probe whose cross-section is a double-ridged rectangle, and whose height is much smaller than the waveguide width; and a standard waveguide section. The advantage of the narrow waveguide is the same as that of the quarter-wave transformer section i.e., it achieves impedance-matching between the sample under test (SUT) and the standard waveguide. The design procedure used for the probe is presented in detail and the performance of the designed resonant probe is evaluated theoretically by using an equivalent circuit. The calculated results are compared with those obtained using the finite element method (Ansoft HFSS), and consistency between the results is demonstrated. Furthermore, the performance of the fabricated resonant probe is evaluated experimentally. At X-band frequencies, we have measured the one-dimensional scanning reflection coefficient of the SUT using the probe. The sensitivity of the proposed resonant probe is improved by more than two times as compared to a conventional waveguide cavity type probe.

주파수 영역에서 연속체 민감도법을 이용한 유전체 저대역 필터 최적 설계 (Optimization Design of a Dielectric Lowpass Filter based on Continuum Design Sensitivity Analysis in Frequency Domain)

  • 최낙선;정기우;김남경;변진규;김동훈
    • 전기학회논문지
    • /
    • 제59권8호
    • /
    • pp.1388-1393
    • /
    • 2010
  • This paper presents a new methodology for designing a dielectric waveguide filter with the cutoff frequency of 2.4 GHz based on the continuum design sensitivity analysis. An analytical sensitivity formula is derived in frequency domain and then unified program architecture applicable to the optimal design of high-frequency devices is proposed. A three-dimensional dielectric resonator used in waveguide filters has been tested to illustrate the validity of the proposed method.

Analysis and Design of Surface Plasmon Waveguide

  • Kim, Min-Wook;Jung, Jae-Hoon
    • 반도체디스플레이기술학회지
    • /
    • 제8권3호
    • /
    • pp.7-11
    • /
    • 2009
  • In this paper, we developed and presented a design result for optimizing the geometry of Ag circular SPP waveguide for subwavelength waveguide applications. We investigated the effect of the design parameters on the light propagation and find the optimum design for small modal size, high coupling coefficient, and low sensitivity. The results show that the globally optimal design locates optimal waveguide geometries more efficiently than individual optimal points for multivalued objective function.

  • PDF

평면 광도파로 기반의 소산파 집적광학 바이오센서의 감지도 최적화에 관한 정규화 해석에 관한 연구 (A Study on the Normalized Analysis of Sensitivity Optimization of Evanescent-Field, Integrated-Optic Biosensor based on Planar Optical Waveguide)

  • 정홍식
    • 센서학회지
    • /
    • 제27권1호
    • /
    • pp.25-30
    • /
    • 2018
  • Closed-form analytical expressions and 3-dimensional normalized charts for the homogeneous sensing and surface sensing structures are derived to provide the conditions for the maximum sensitivity of integrated-optic biosensors based on evanescent-wave and stepindex planar optical waveguides. The analysis is made for transverse electric (TE) polarization mode, in both cases where the measurand is homogeneously distributed in the cover (namely, homogeneous sensing), and where it is an ultrathin film on the waveguide-cover interface (namely, surface sensing).

집적광학 바이오케미컬 센서에 적합한 Si3N4/SiO2 슬롯 및 릿지-슬롯 광 도파로 제원 최적화 및 감지도 해석 (Specification optimization and sensitivity analysis of Si3N4/SiO2 slot and ridge-slot optical waveguides for integrated-optical biochemical sensors)

  • 장재식;정홍식
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.139-147
    • /
    • 2021
  • Numerical analysis was performed using FIMMWAVE to optimize the specifications of Si3N4/SiO2 slot and ridge-slot optical waveguides based on confinement factor and effective mode area. The optimized specifications were confirmed based on sensitivity in terms of the refractive index of the analyte. The specifications of the slot optical waveguide, i.e., the width of the slot and the width and height of the rails, were optimized to 0.2 ㎛, 0.46 ㎛, and 0.5 ㎛ respectively. When the wavelength was 1.55 ㎛ and the refractive index of the slot was 1.3, the confinement factor and effective mode area of 0.2024 and 2.04 ㎛2, respectively, were obtained based on the optimized specifications. The thickness of the ridge and the refractive index of the slot were set to 0.04 ㎛ and 1.1, respectively, to optimize the ridge-slot optical waveguide, and the confinement factor and effective mode area were calculated as 0.1393 and 2.90 ㎛2, respectively. When the confinement coefficient and detection degree of the two structures were compared in the range of 1 to 1.3 of the analyte index, it was observed that the confinement coefficient and sensitivity were higher in the ridge-slot optical waveguide in the region with a refractive index less than 1.133, but the reverse situation occurred in the other region. Therefore, in the implementation of the integrated optical biochemical sensor, it is possible to propose a selection criterion for the two parameters depending on the value of the refractive index of the analyte.

구속계수와 감지도에 기반한 집적광학 바이오케미컬 센서에 적합한 수직 SOI 슬롯 광 도파로 최적화 (Optimization of vertical SOI slot optical waveguide with confinement factor and sensitivity for integrated-optical biochemical sensors)

  • 정홍식
    • 센서학회지
    • /
    • 제30권3호
    • /
    • pp.131-138
    • /
    • 2021
  • The optimization of the specifications of vertical silicon on insulator (SOI) slot optical waveguides suitable for integrated-optical biochemical sensors was performed through computational analysis of the confinement factor of the guided mode distributed in the slot in addition to analytical examination of the TE mode. The optimized specifications were confirmed based on sensitivity in terms of the change in the refractive index of the biochemical analyte. When the slot width, rail width, and height were set to 120 nm, 200 nm, and 320 nm, respectively, the confinement factor was evaluated to be about 56% and the sensitivity was at least 0.9 [RIU/nm].