DOI QR코드

DOI QR Code

High Sensitive Fiber Optic Temperature Sensor Based on a Side-polished Single-mode Fiber Coupled to a Tapered Multimode Overlay Waveguide

  • Received : 2010.08.02
  • Accepted : 2010.11.02
  • Published : 2010.12.25

Abstract

A high sensitivity fiber optic temperature sensor based on a side-polished fiber (SPF) coupled to a tapered multimode overlay waveguide (MMOW) is proposed and studied. Both tapered and non-tapered MMOW were considered to study the effect of tapering of MMOW on the characteristics of the device and to investigate the criticality of the uniformity of the multimode overlay waveguide over the SPF. Present study shows that tapering of the MMOW can be used to tune the desired wavelength range without any loss in the sensitivity. Sensitivity up to 9 nm/$^{\circ}C$ within the temperature range of 25 to $100^{\circ}C$ can be achieved with the proposed sensor, almost 6 times higher compared even to state-of-the-art high-sensitivity grating-based fiber optic temperature sensors.

Keywords

References

  1. R. K. Varshney, “Side-polished fiber coupler half block and devices,” in Guided Wave Optics, A. Sharma, ed. (Viva Books Pvt. Ltd., New Delhi, India, 2005), Chapter 7.
  2. W. Johnstone, G. Thursby, D. Moodie, R. K. Varshney, and B. Culshaw, “Fiber optic wavelength channel selector with high resolution,” Electron. Lett. 28, 1364-1365 (1992). https://doi.org/10.1049/el:19920867
  3. S. M. Tseng and C. L. Chen, “Side polished fibers,” Appl. Opt. 31, 3438-3447 (1992). https://doi.org/10.1364/AO.31.003438
  4. R. K. Varshney, A. Singh, K. Pande, and B. P. Pal, “Side polished fiber based gain flattening filter for erbium doped fiber amplifiers,” Opt. Comm. 271, 441-444 (2007). https://doi.org/10.1016/j.optcom.2006.10.064
  5. B. P. Pal, G. Raizada, and R. K. Varshney, “Modelling a fiber half block with multimode overlay waveguide,” J. Opt. Comm. 17, 179-183 (1996).
  6. G. Raizada and B. P. Pal, “Refractometers and tunable components based on side polished fibers with multimode overlay waveguides: role of the superstrate,” Opt. Lett. 21, 399-401 (1996). https://doi.org/10.1364/OL.21.000399
  7. D. Flannery, S. W. James, R. P. Tatamand, and G. J. Ashwell, “pH sensors using Langmuir Blodgett overlay on polished optical fibers,” Opt. Lett. 15, 567-569 (1997).
  8. K. R. Sohn, K. T. Kim, and S. W. Kang, “Optical fiber sensor for water detection using side polished fiber with a planar glass overlay waveguide,” Sens. Actuators A 101, 137-142 (2002). https://doi.org/10.1016/S0924-4247(02)00215-7
  9. W. G. Jung, S. W. Kim, K. T. Kim, E. S. Kim, and S. W. Kang, “High sensitivity temperature sensor using a side polished single mode fiber covered with the polymer planar waveguide,” IEEE Photon. Technol. Lett. 13, 1209-1211 (2001). https://doi.org/10.1109/68.959366
  10. C. L. Tien, C. C. Hwang, H. W. Chen, W. F. Liu, and S. W. Lin, “Magnetic sensor based on side-polished fiber Bragg grating coated with iron film,” IEEE Trans. on Magnetics 42, 3285-3287 (2006). https://doi.org/10.1109/TMAG.2006.881095
  11. H. Y. Lin, W. H. Tsai, Y. C. Tsao, and B. C. Sheu, “Side-polished multimode fiber biosensor based on surface plasmon resonance with halogen light,” Appl. Opt. 46, 800-806 (2007). https://doi.org/10.1364/AO.46.000800
  12. B. Nagaraju, R. K. Varshney, B. P. Pal, A. Singh, G. Monnom, and B. Dussardier, “Design and realization of a side-polished single-mode fiber optic high sensitive temperature sensor,” Proc. SPIE 7138, 71381H-1-71381H-6 (2008).
  13. R. K. Varshney, B. Nagaraju, A. Singh, B. P. Pal, and A. K. Kar, “Design and realization of an all-fiber broadband tunable gain equalization filter for DWDM signals,” Opt. Express 15, 13519-13530 (2007). https://doi.org/10.1364/OE.15.013519
  14. K. T. Kim, S. Hwangbo, J. P. Mah, and K. R. Sohn, “Widely tunable filter based on coupling between a side-polished fiber and a tapered planar waveguide,” IEEE Photon. Technol. Lett. 17, 142-144 (2005). https://doi.org/10.1109/LPT.2004.837255
  15. A. Sharma, J. Kompella, and P. K. Mishra, “Analysis of fiber directional coupler half blocks using a new simple model for single mode fiber,” IEEE J. Lightwave Technol. 8, 143-151 (1990). https://doi.org/10.1109/50.47863
  16. A. K. Ghatak, K. Thyagarajan, and M. R. Shenoy, “Numerical analysis of planar optical waveguides using matrix method,” IEEE J. Lightwave Technol. 5, 660-667 (1987). https://doi.org/10.1109/JLT.1987.1075553
  17. Y. J. Rao, “In-fiber grating sensors,” Meas. Sci. Technol. 8, 355 (1997). https://doi.org/10.1088/0957-0233/8/4/002
  18. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” IEEE J. Lightwave Technol. 15, 1442-1463 (1997). https://doi.org/10.1109/50.618377

Cited by

  1. Interferometric Fiber Optic Sensors vol.12, pp.12, 2012, https://doi.org/10.3390/s120302467
  2. Temperature sensing characteristics of tapered Tm3+-doped fiber amplifiers vol.27, pp.8, 2017, https://doi.org/10.1088/1555-6611/aa7d91
  3. Sagnac interferometer based on an etched photonic crystal fiber vol.60, pp.8, 2012, https://doi.org/10.3938/jkps.60.1229
  4. Optical-fiber Electronic Speckle Pattern Interferometry for Quantitative Measurement of Defects on Aluminum Liners in Composite Pressure Vessels vol.17, pp.1, 2013, https://doi.org/10.3807/JOSK.2013.17.1.050
  5. A numerical algorithm to determine straightness error, surface roughness, and waviness measured using a fiber optic interferometer vol.85, 2016, https://doi.org/10.1016/j.optlastec.2016.05.014
  6. Temperature sensing characteristics of tapered Yb-doped fiber amplifiers vol.124, pp.22, 2013, https://doi.org/10.1016/j.ijleo.2013.04.052
  7. Power, sensitivity, and response time optimization in TDM self-reference intensity sensor networks with ring resonators vol.26, pp.24, 2018, https://doi.org/10.1364/OE.26.031264