• 제목/요약/키워드: Wave transformation model

검색결과 134건 처리시간 0.029초

광안해역에서의 파랑변형예측 (Prediction Wave Transformation in the Kwangan Beach)

  • 박정철;김재중;이정만
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 춘계학술대회논문집
    • /
    • pp.75-81
    • /
    • 2000
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develop as wave-current equation type to investigate the effect of wave-current interaction. This wave-current model was applied to the Kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

광안해역에서의 파랑변형예측 (Prediction of Wave Transformation in the Kwangan Beach)

  • 박정철;김재중;김인철
    • 한국해양공학회지
    • /
    • 제15권2호
    • /
    • pp.6-10
    • /
    • 2001
  • Water waves propagate over irregular bottom bathymetry are transformed by refraction, diffraction, shoaling, reflection etc. Principal factor of wave transform is bottom bathymetry, but in case of current field, current is another important factor which effect wave transformation. The governing equation of this study is develope as wave-current equation type to investigate the effect of wave-current interaction. It starts from Berkhoff's(1972) mild slope equation and is transformed to time-dependent hyperbolic type equation by using variational principal. Finally the governing equation is shown as a parabolic type equation by splitting method. This wave-current model was applied to the kwangan beach which is located at Pusan. The numerical simulation results of this model show the characteristics of wave transformation and flow pattern around the Kwangan beach fairly well.

  • PDF

스펙트럼을 이용한 파랑변형 예측 (Prediction Wave Transformation for Using Wave Spceturm)

  • 박정철;김재중
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 1999년도 추계학술대회논문집
    • /
    • pp.235-242
    • /
    • 1999
  • Wave which propagate from the offshore cause transformation of diffraction, refraction, and reflection etc. in coming in the coastal by depth change. Especially, Wave strongly show the charcateristics of rancom wave in the coastal zone. Developed wave model until a recent date analysed regular waves with height and period equal to those of the significant wave, In case of Monochromatic wave, it can be analysed fine in the offshore, but differ from in coastal zone. In this study, form of governing equation is parabolic mild slope equation. This model calculated random wave for using frequency spectrum and directional spectrum from input data condition of wave. This model is applied to Vincent shoal and compared with laboratory experimental data. The results agreed well with laboratory data.

투수층의 흐름을 고려한 투수성 구조물의 파랑변형에 관한 수치적 해석 (A Numerical Study of Wave Transformation on a Permeable Structure Considering Porous Media Flow)

  • 김인철
    • 한국해양공학회지
    • /
    • 제20권6호
    • /
    • pp.35-40
    • /
    • 2006
  • In recent years, there's been strong demand for seawalls that havea gentle slope and permeability that serveswater affinity and disaster prevention from wave attack. The aim of this study is to examine wave transformation, including wave run-up that propagates on the coastal structures. A numerical model based on the weak nonlinear dispersive Boussinesq equation, together with the unsteady nonlinear Darcy law for fluid motion in permeable layer, is developed. The applicability of this numerical model is examined through Deguchi and Moriwaki's hydraulic model test on the permeable slopes. From this study, it is found that the proposed numerical model can predict wave transformation and run-up on the gentle slope with a permeable layer, but can't show accurate results for slopes steeper than about 1:10.

해양구조물 설계를 위한 파랑변형 수치모형실험 (Numerical Model Experiments of Wave Transformation for the Marine Structure Design)

  • 장호식
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.440-447
    • /
    • 2012
  • 천수변형, 굴절, 회절, 반사, 쇄파에 의한 에너지감쇠를 모두 고려한 시간의존완경사방정식을 이용하여 50년 빈도 설계파 내습시 매립과 방파제 설치에 따른 파랑변형 수치실험을 수행하였다. 항의 입구에서 입사되는 파랑은 만내부로 진입하는 과정에서 바닥에 의한 에너지 감쇠와 쇄파 작용 등으로 인해 파고의 점진적 감소가 나타났다. 매립후 75 m의 방파제를 설치하였을 경우 방파제 배후에서 파고분포는 29~128 cm 범위로 일부 해역에서 항만 정온도가 확보되는 것으로 나타났다. 보다 넓은 해역에서 정온도를 확보하기 위해서는 방파제의 길이를 100 m 이상 확장하는 것이 타당할 것으로 판단된다. 그리고, 방파제를 설치하였을 경우 방파제 배후에서 파고는 80% 이상 감소하였다.

Wave propagation in a FG circular plate via the physical neutral surface concept

  • She, Gui-Lin;Ding, Hao-Xuan;Zhang, Yi-Wen
    • Structural Engineering and Mechanics
    • /
    • 제82권2호
    • /
    • pp.225-232
    • /
    • 2022
  • In this paper, the physical neutral surface concept is applied to study the wave propagation of functionally graded (FG) circular plate, the wave equation is derived by Hamiltonian variational principle and the first-order shear deformation plate model. Then, we convert the equations to dimensionless equations. The exact solution of wave propagation problem is obtained by Laplace integral transformation, the first order Hankel integral transformation and the zero order Hankel integral transformation. The results obtained by the current model are very close to those obtained in the existing literature, which indicates the correctness and reliability of this study. Moreover, the effects of the functionally graded index parameters and pore volume fraction on the wave propagation are also discussed in detail.

삼천포 신항의 파고분포 해석 (An Analysis of Wave Height Distribution in the Vicinity of Samcheon New-Harbor)

  • 장대정;함계운
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.39-46
    • /
    • 2010
  • The calmness inside a harbor plays an important role in the appropriate disposition of harbor structures. However, it is not easy to acquire accurate computational results because these are affected by many factors concerned with wave transformation. Recently, numerical model tests, which are quicker and more economical than hydraulic model experiments, were carried out for the purpose of analyzing wave height distributions in harbors. This paper presents a numerical model that is able to calculate wave heights inside a harbor. It is based on a time-dependent mild slope involving wave refraction, diffraction, shoaling effect, and reflection. In particular, arbitrary reflectivity is used at the boundary in order to simulate the real harbor reflection condition. The proposed numerical model is applied to Samcheon new-harbor in order to investigate harbor calmness.

파랑 변형 해석을 위한 복합 유한요소 모형 (Hybrid finite element model for wave transformation analysis)

  • 정태화;박우선;서경덕
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.209-212
    • /
    • 2002
  • Since Berkhoff proposed the mild-slope equation in 1972, it has widely been used for calculation of shallow water wave transformation. Recently, it was extended to give an extended mild-slope equation, which includes the bottom slope squared term and bottom curvature term so as to be capable of modeling wave transformation on rapidly varying topography. These equations were derived by integrating the Laplace equation vertically. In the present study, we develop a finite element model to solve the Laplace equation directly while keeping the same computational efficiency as the mild-slope equation. This model assumes the vertical variation of wave potential as a cosine hyperbolic function as done in the derivation of the mild-slope equation, and the Galerkin method is used to discretize . The computational domain was discretized with proper finite elements, while the radiation condition at infinity was treated by introducing the concept of an infinite element. The upper boundary condition can be either free surface or a solid structure. The applicability of the developed model was verified through example analyses of two-dimensional wave reflection and transmission. .

  • PDF

수정완경사방정식의 타원형 수치모형 (Elliptic Numerical Wave Model Solving Modified Mild Slope Equation)

  • 윤종태
    • 한국해양공학회지
    • /
    • 제18권4호
    • /
    • pp.40-45
    • /
    • 2004
  • An efficient numerical model of the modified mild slope equation, based on the robust iterative method is presented. The model developed is verified against other numerical experimental results, related to wave reflection from an arc-shaped bar and wave transformation over a circular shoal. The results show that the modified mild slope equation model is capable of producing accurate results for wave propagation in a region where water depth varies substantially, while the conventional mild slope equation model yeilds large errors, as the mild slope assumption is violated.

수중타원형 천퇴상 불규칙파의 파랑쇄파류에 의한 변형 수치모의 (Numerical Simulation of Irregular Wave Transformation due to Wave-induced Current over a Submerged Elliptic Shoal)

  • 최준우;백운일;윤성범
    • 한국해안해양공학회지
    • /
    • 제19권6호
    • /
    • pp.565-573
    • /
    • 2007
  • 타원형 수중천퇴가 있는 지형을 통과하며 변형하는 파랑을 실험한 Vincent and Briggs(1989)의 불규칙파 실험조건을 수치모의하여 파랑과 흐름의 상호작용 효과를 연구하였다. 수치모의를 위해 SHORECIRC(흐름모형)와 REF/DIF S(파랑모형)를 결합한 모형과 파랑과 흐름을 동시에 계산하는 FUNWAVE를 이용하였다. 이 수치모의로부터 수중 천퇴상에서 발생된 쇄파류는 수중천퇴후면의 파 집중현상을 방해하고, 파랑을 천퇴중심축의 바깥쪽으로 굴절시켜, 파고를 상대적으로 감소시키는 역할을 하는 것을 확인할 수 있었다. 결합모형의 수치모의 결과는 쇄파류의 영향을 고려하지 않는 파랑모형만의 결과보다 실험치와 더 일치하였으며, FUNWAVE를 이용한 수치모의도 실험결과와 잘 일치하였다. 이는 파랑쇄파류의 파랑변형에 미치는 역할의 중요성을 확인시켜주는 것이다.