• Title/Summary/Keyword: Wave forces

Search Result 597, Processing Time 0.03 seconds

Prediction of the turning and zig-zag maneuvering performance of a surface combatant with URANS

  • Duman, Suleyman;Bal, Sakir
    • Ocean Systems Engineering
    • /
    • v.7 no.4
    • /
    • pp.435-460
    • /
    • 2017
  • The main objective of this study is to investigate the turning and zig-zag maneuvering performance of the well-known naval surface combatant DTMB (David Taylor Model Basin) 5415 hull with URANS (Unsteady Reynolds-averaged Navier-Stokes) method. Numerical simulations of static drift tests have been performed by a commercial RANS solver based on a finite volume method (FVM) in an unsteady manner. The fluid flow is considered as 3-D, incompressible and fully turbulent. Hydrodynamic analyses have been carried out for a fixed Froude number 0.28. During the analyses, the free surface effects have been taken into account using VOF (Volume of Fluid) method and the hull is considered as fixed. First, the code has been validated with the available experimental data in literature. After validation, static drift, static rudder and drift and rudder tests have been simulated. The forces and moments acting on the hull have been computed with URANS approach. Numerical results have been applied to determine the hydrodynamic maneuvering coefficients, such as, velocity terms and rudder terms. The acceleration, angular velocity and cross-coupled terms have been taken from the available experimental data. A computer program has been developed to apply a fast maneuvering simulation technique. Abkowitz's non-linear mathematical model has been used to calculate the forces and moment acting on the hull during the maneuvering motion. Euler method on the other hand has been applied to solve the simultaneous differential equations. Turning and zig-zag maneuvering simulations have been carried out and the maneuvering characteristics have been determined and the numerical simulation results have been compared with the available data in literature. In addition, viscous effects have been investigated using Eulerian approach for several static drift cases.

Non-contact Transportation of Flat Panel Substrate by Combined Ultrasonic Acoustic Viscous and Aerostatic Forces

  • Isobe, Hiromi;Fushimi, Masaaki;Ootsuka, Masami;Kyusojin, Akira
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.2
    • /
    • pp.44-48
    • /
    • 2007
  • In recent years, the size of plane substrates and semiconductor wafers has increased. As conventional contact transportation systems composed of, for example, carrier rollers, belt conveyers, and robot hands carry these longer and wider substrates, the increased weight results in increased potential for fracture. A noncontact transportation system is required to solve this problem. We propose a new noncontact transportation system combining acoustic viscous and aerostatic forces to provide damage-free transport. In this system, substrates are supported by aerostatic force and transported by acoustic viscous streaming induced by traveling wave deformation of a disk-type stator. A ring-type piezoelectric transducer bonded on the stator excites vibration. A stator with a high Q piezoelectric transducer can generate traveling vibrations with amplitude of $3.2{\mu}m$. Prior to constructing a carrying road for substrates, we clarified the basic properties of this technique and stator vibration characteristics experimentally. We constructed the experimental equipment using a rotational disk with a 95-mm diameter. Electric power was 70 W at an input voltage of 200 Vpp. A rotational torque of $8.5\times10^{-5}Nm$ was obtained when clearance between the stator and disk was $120{\mu}m$. Finally, we constructed a noncontact transport apparatus for polycrystalline silicon wafers $(150(W)\times150(L)\times0.3(t))$, producing a carrying speed of 59.2 mm/s at a clearance of 0.3 mm between the stator and wafer. The carrying force when four stators acted on the wafer was $2\times10^{-3}N$. Thus, the new noncontact transportation system was demonstrated to be effective.

Topology Optimization Application for Initial Platform Design of 10 MW Grade Floating Type Wave-wind Hybrid Power Generation System (10MW급 부유식 파력-풍력 복합발전 시스템 플랫폼 초기설계를 위한 위상최적화 응용)

  • Song, Chang Yong;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.3
    • /
    • pp.194-202
    • /
    • 2016
  • This study aims to review a topology optimization based on finite element analysis (FEA) for conceptual design of platform in the 10MW class floating type wave-wind hybrid power generation system (WHPGS). Two topology optimization theories, density method (DM) and homogenization design method (HDM) were used to check which one is more effective for a simplified structural design problem prior to the topology optimization of platform of WHPGS. From the results of the simplified design problem, the HDM was applied to the topology optimization of platform of WHPGS. For the conceptual platform design of WHPGS, FEA model was created and then the structural analysis was performed considering offshore environmental loads at installation site. Hydrodynamics analysis was carried out to calculate pressure on platform and tension forces in mooring lines induced from the offshore environmental loads such as design wave and current. Loading conditions for the structural analysis included the analysis results from the hydrodynamic analysis and the weights of WHPGS. Boundary condition was realized using inertia relief method. The topology optimization of WHPGS platform was performed using the HDM, and then the conceptual arrangement of main structural members was suggested. From the results, it was confirmed that the topology optimization might be a useful tool to design the conceptual arrangement of main structural members for a newly developed offshore structure such as the floating type WHPGS.

Earthquake Wave Propagation Using Staggered-grid Finite-difference Method in the Model of the Antarctic Region (엇격자 유한차분법을 이용한 극지해역 지진파 모델링)

  • Oh, Ju-Won;Min, Dong-Joo;Lee, Ho-Yong;Park, Min-Kyu
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.640-653
    • /
    • 2011
  • We simulate the propagation of earthquake waves in the continental margin of Antarctica using the elastic wave modeling algorithm, which is modified to be suitable for acoustic-elastic coupled media and earthquake source. To simulate the various types of earthquake source, the staggered-grid finite-difference method, which is composed of velocity-stress formulae, can be more appropriate to use than the conventional, displacement-based, finite-difference method. We simulate the elastic wave propagation generated by earthquakes combining 3D staggered-grid finite-difference algorithm composed of displacement-velocity-stress formulae with double couple mechanisms for earthquake source. Through numerical tests for left-lateral strike-slip fault, normal fault and reverse fault, we could confirm that the first arrival of P waves at the surface is in a good agreement with the theoretically-predicted results based on the focal mechanism of an earthquake. Numerical results for a model made after the subduction zone in the continental margin of Antarctica showed that earthquake waves, generated by the reverse fault and propagating through the continental crust, the oceanic crust and the ocean, are accurately described.

Experimental Study on Elastic Response of Circular Cross-section Slender Body to Forced Oscillation, Waves, and Current (복합 외력환경 중 원형 단면 세장체의 탄성응답에 관한 실험적 연구)

  • Park, Ji-won;Lee, Seung-Jae;Jo, Hyo-Jae;Hwang, Jae-Hyuk;Han, Sung-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.91-99
    • /
    • 2016
  • The global demand for oil and natural gas has increased, and resource development is moving to the deep sea. Floating and flexible offshore structures such as semi-submersible, spar, and FPSO structures have been widely used. The major equipment of floating structures is always exposed to waves, currents, and other marine environmental factors, which cause structural damage. Moreover, flexible risers are susceptible to an exciting force due to the motion of the floating body. The inline and transverse responses from the three-dimensional behavior of a floating structure occur because of various forces. Typical risers are made of steel pipe and applied in the oil and gas development field, but flexible materials such as polyethylene are suitable for OTEC risers. Consequently, the optimal design of a flexible offshore plant requires a dynamic behavior analysis of slender bodies made of the different materials commonly used for offshore flexible risers. In this study, a three-dimensional motion measurement device was used to analyze the displacements of riser models induced by external force factors, and forced oscillation of a riser was linked to forced oscillation under a steady flow and regular wave condition.

Analysis of Dynamic Positioning System Based on Self-Tuning Control (자기동조 제어기를 이용한 위치확보 시스템에 관한 연구)

  • Sang-M.,Lee;Pan-M.,Lee;Sa-Y.,Hong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.26 no.2
    • /
    • pp.32-40
    • /
    • 1989
  • Dynamic ship positioning(DP) system is used to keep the position and heading of a ship, or a floating platform, above a pre-selected site on the seabed by using thrusters. This paper presents a control system based on filtering technique and optimal control theory. The planar motions of a vessel are assumed to consist of low frequency(LF) component and high frequency(HF) one. The former is mainly due to thrusters, current, wind and second order wave forces, while the latter is mainly due to first order oscillatory component of the wave force. Furthermore position measurement signals include the noise. By means of self-tuning filter and Kalman filter techniques, LF motion estimates and HF ones are seperately achieved from the position measurements of the vessel. The estimated LF motions are used as input to the feedback loops. The total thruster power is minimized using the Linear Quadratic Gaussian control theory. The performance of the vessel with the DP system is investigated by computer simulation.

  • PDF

Modeling of Multi-Boom Floating Crane for Lifting Analysis of Offshore Wind Turbine (해상 풍력 발전기 리프팅 해석을 위한 해상 크레인 멀티 붐 모델링)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.115-120
    • /
    • 2011
  • The dynamic responses of a 5 MW wind turbine lifted by a floating crane with two elastic booms are analyzed. Dynamic equations of motions of a multibody system that consists of a floating crane, two elastic booms, and a wind turbine are derived. The six-degree-of-freedom (DOF) motions for the floating crane and the wind turbine are considered in the equations of motions. The hydrostatic force, the hydrodynamic force due to a regular wave, the mooring force, the wire rope force, and the gravitational force are considered as external forces. By solving the equations numerically, the dynamic responses of cargo are simulated. The simulation results are compared with those in the case of one elastic boom. Finally, the dynamic responses of the wind turbine lifted by the floating crane are analyzed under regular wave condition.

Comparison of Signal Powers Generated with Metal Hammer Plate and Plastic Hammer Plate (금속 및 플라스틱 재질의 해머 타격판에 의해 발생된 신호의 파워 비교)

  • Kim, Jin-Hoo;Lee, Young-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.4
    • /
    • pp.282-288
    • /
    • 2011
  • One of the most challenging issues facing shallow seismic survey is how to generate large amplitude of high frequency signal with small seismic sources. We tested the performance of the most commonly used shallow seismic source, hammer, with four plates: PE, nylon, aluminum, and steel plates. We compared their signal powers in terms of impulsive forces, accelerations, and ground vibration velocities caused by hammer impacts. According to a previous work, hammer blowing to an aluminum plate would generate the largest amplitude among four combinations. However, it was found in this experimental research that aluminum plate delivers seismic wave energy to the ground less than that generated with steel or PE plate. Even though the amplitude is relatively small, plastic plates could provide seismic pulses of 180 ~ 200 Hz in the bandwidth, and it seems to be very hard to generate seismic energy over the frequency of 250 Hz.

Characteristics on the Motion Response of a Catamaran Power Yacht (카타마란형 파워요트의 운동응답 특성에 관한 연구)

  • Gim, Ok-Sok;Oh, Woo-Jun;Shon, Chang-Bae;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.34 no.6
    • /
    • pp.447-452
    • /
    • 2010
  • A very good seakeeping vessel is able to operate effectively even in high sea states and also the passengers and the cargos are ensured in good conditions. The motions of a high speed boats are highly influenced by speed and dynamic forces even in encounter frequencies so that the assessment of seakeeping ability of the design craft in an early stage needs to be calculated for all three motions and for all ralative wave headings. In this paper, it concludes that RAO and RMS values of the catamaran's 3 motion are calculated according as the variation of Beafort scales and ship's speed. The ship motion response of the catamaran based on the RAO and RMS by encounter angles and speed was calculated.

On the Motion of Two-dimensional Healing Breakwaters Moored Tautly in Shallow Water (천해역에 기인장 계유된 2차원 부방파제 운동 해석)

  • 정원무;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.3 no.3
    • /
    • pp.137-151
    • /
    • 1991
  • The motion of two-dimensional floating breakwaters with rectangular clots-section which are moored tautly in shallow water has been analyzed using a velocity potential matching method in which the fluid region is devided into sub-regions and then unknown coefficients of velocity potentials are determined from the continuity condition of mass and momentum flux of fluid at imaginary boundaries between sub-regions. The method originally suggested by Ijima et al.(1972) for the motion of submerged body has been modified to analyze the motion of floating body. The total fluid region has been divided into three sub-regions : the incident wave region, the transmitted wave region and the region below the floating breakwater. The restoring forces induced by mooring lines which were ignored by Ijima et al.(1972) have been modeled as linear springs with the initial tension effects. This method has been verified through the comparions with results from hydraulic expriments. Applications to various conditions of floating breakwater have been performed.

  • PDF