• Title/Summary/Keyword: Wave Pressure

Search Result 2,090, Processing Time 0.028 seconds

Numerical Study on The Effects of Blade Leading Edge Shape to the Performance of Supersonic Rotors (초음속 회전익의 앞전 형상이 공력 성능에 미치는 효과에 대한 수치적 연구)

  • Park, Kicheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.149-155
    • /
    • 2001
  • Recently, it is required to design higher stage pressure ratio compressor while maintaining equal adiabatic efficiency. To increase the stage pressure ratio, blade rotational speed or diffusion factor should be increased. In the case of increasing rotational speed, relative speed of flow at blade leading edge is well supersonic. In supersonic blade, total pressure loss is mainly due to shock wave and blade leading edge thickness should be very thin to minimize the shock wave loss. As a result, the blade is like to be week in terms of mechanical strength and the manufacturing cost is very high because NC machining is necessary. It is also one of big hurdle to overcome to make small compressor. In this paper, the effects of blade leading edge to the performance of supersonic blade In terms of total pressure loss. The efficiency of already known method to make thin blade leading edge from the casted blade with rather thick leading edge thickness is also assessed.

  • PDF

Advanced Semi-Implicit Method (ASIM) for Hyperbolic Two-Fluid Model (2-유체 모델을 위한 '개선된 Semi-Implicit 기법')

  • Lee, Sung-Jae;Chung, Moon-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2005-2011
    • /
    • 2003
  • Introducing the interfacial pressure jump terms based on the surface tension into the momentum equations of two-phase two-fluid model, the system of governing equations is turned mathematically into the hyperbolic system. The eigenvalues of the equation system become always real representing the void wave and the pressure wave propagation speeds as shown in the previous manuscript. To solve the interfacial pressure jump terms with void fraction gradients implicitly, the conventional semi-implicit method should be modified as an intermediate iteration method for void fraction at fractional time step. This advanced semi-implicit method (ASIM) then becomes stable without conventional additive terms. As a consequence, including the interfacial pressure jump terms with the advanced semi-implicit method, the numerical solutions of typical two-phase problems can be more stable and sound than those calculated exclusively by using any other terms like virtual mass, or artificial viscosity.

  • PDF

Mean Drift Force Acting on a Floating OWC Wave Power Device (부유식 OWC 파력발전 챔버의 파 표류력해석)

  • HONG Do-Chun;HONG Sa-Young;HONG Seok-Won
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.373-376
    • /
    • 2002
  • The drift force acting on a floating OWC chamber in waves is studied taking account of fluctuating air pressure in the air chamber. A velocity potential in the water due to the free surface oscillating pressure patch is added to the conventional radiation-diffraction potential problem. The potential problem inside the chamber is formulated by making use of the Green integral equation associated with the Rankine Green function while the outer problem with the Kelvin Green function. The drift forces as well as the chamber motions are calculated taking account of the air pressure in the chamber.

  • PDF

Experimental study on the alleviation of micro-pressure waves radiated from the tunnel exit with the slit hoods on the high-speed train operations of 300km/h (300km/h급 고속철도의 터널 미기압파 저감을 위한 슬릿후드의 실험적 연구)

  • Kim, Dong-Hyeon;Min, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.619-624
    • /
    • 2000
  • The purpose of present study is to investigate for reducing micro pressure waves generated according to train speeds $(240km/h{\sim}380km/h)$ through tunnels with countermeasures as followings; the hood configuration in tunnel entrance. We developed hoods for tunnel of 0.5 km length in the condition of tunnel cross-section area of $107m^2$ on the slab track. According to the results the maximum micro-pressure wave is reduced by 41.2% for the slit hood installed at the entrance of the tunnel and reduced by 47.7% for the slit hood installed at the entrance of the tunnel and the $45^{\circ}$ slanted portal at the exit of the tunnel

  • PDF

Comparison of Meteorological Elements by Type of City during Summer Season - Focus on the Daegu Metropolitan City and the Surrounding Four Regions - (하절기 도시 유형별 기상요소 비교 -대구광역시와 인근 4개 지역을 중심으로-)

  • Choi, Dong-Ho;Lee, Bu-Yong;Jeong, Hyeong-Se
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.111-122
    • /
    • 2014
  • The purpose of this study is to understand relation of meteorological elements of air temperature, relative humidity and vapor pressure of four cities with Daegu. The followings are main results from this study. 1) There is very high correlation of meteorological elements according to distance between city and city. 2) In case of seaside town at Pohang, there were little changes than other cities for temperature, humidity and vapor pressure. 3) It was analysed stable and similar diurnal variation in water vapor pressure than air temperature and relative humidity at all observation site.

A Study on the Liquefaction Resistance of Anisotropic Sample under Real Earthquake Loading (이방 구속 조건에서 실지진 하중을 이용한 액상화 저항강도 특성 분석)

  • Lee, Chae-Jin;Jeong, Sang-Seom;Kim, Soo-Il
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1188-1191
    • /
    • 2009
  • In this study, cyclic triaxial tests were performed with the samples which were anisotropically consolidated using irregular earthquake loading to consider in-situ condition and seismic wave. The consolidation pressure ratio(K) was changed from 0.5 to 1.0. The Ofunato and Hachinohe wave are applied as irregular earthquake loading and liquefaction resistance strength was estimated from excess pore water pressure(EPWP) ratio. As results of the cyclic triaxial tests, buildup of EPWP ratio increased as K value increased. It shows, that the isotropically consolidated sands is more susceptible to liquefaction than anisotropically consolidated sands under equal conditions such as confining pressure and dynamic loading.

  • PDF

Pressure-Temperature Phase Diagram of $(TMTSF)_2BF_4$ ($(TMTSF)_2BF_4$의 압력-온도 상태도 연구)

  • Jo, Y.J.
    • Progress in Superconductivity
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2012
  • $(TMTSF)_2BF_4$ containing non-centrosymmetric anions is well known to exhibit a metal insulator transition around 37 K by ordering of the anions with a $q_2$=(1/2, 1/2, 1/2) wave vector. We established pressure-temperature phase diagram of the $(TMTSF)_2BF_4$ compound and showed that it can belong to the general phase diagram of the $(TMTSF)_2X$ family. Application of hydrostatic pressure decreases the anion ordering transition temperature and the superconducting state is finally stabilized below 3.77 K under 7.7 kbar. Magnetoresistance measurement on the $(TMTSF)_2BF_4$ under 7.8 kbar is performed but neither the field-induced spin-density-wave state nor the rapid oscillation is observed up to 9 T.

On Long Wave Induced by a Sub-sea Landslide Using a 2D Numerical Wave Tank

  • Koo, Weon-Cheol;Kim, Moo-Hyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.5
    • /
    • pp.1-8
    • /
    • 2007
  • A long wave induced by a Gaussian-shape submarine landslide is simulated by a 2D fully nonlinear numerical wave tank (NWT). The NWT is based on the boundary element method and the mixed Eulerian/Lagrangian approach. Using the NWT, physical characteristics of land-slide tsunami, including wave generation, propagation, particle kinematics, hydrodynamic pressure, run-up and depression, are simulated for the early stage of long wave generation and propagation. Various sliding mass heights are applied to the developed model for a systematic sensitivity analysis. In particular, the fully nonlinear NWT results are compared with linear results (exact body-boundary conditions with linear free-surface conditions) to identify the nonlinear effects in the respective cases.

Study on the Characteristics of Impulse Wave Discharged from the Tube Exit with Non-Circular Cross-Section (비원형 관출구로부터 방출되는 펄스파의 특성에 관한 연구)

  • Shin, Hyun-Dong;Kweon, Yong-Hun;Lee, Young-Ki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.550-555
    • /
    • 2003
  • When a shock wave arrives at an open end of tube, an impulse wave is discharged from the tube exit and complicated flow is formed near tube exit. The flow field is influenced by the cross-sectional geometry of tube exit, such as circular, square, rectangular, trapezoid and etc. In the current study, three-dimensional propagation characteristics of impulse wave discharged from the tube exit with non-circular cross section are numerically investigated using a CFD method. Total variation diminishing (TVD) scheme is used to solve the three-dimensional, unsteady, compressible Euler equations. Computations are performed for the Mach numbers of the incident shock wave $M_{s}$ below 1.5. The results obtained show that the peak pressure of the impulse wave and propagation directivity depends on the cross-sectional geometry of tube exit and the Mach number of incident shock wave.

  • PDF

CFD study of an iterative focused wave generation method

  • Haoyuan Gu;Hamn-Ching Chen
    • Ocean Systems Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-20
    • /
    • 2023
  • An iterative focused wave generation method is developed and implemented in a local analytic based Navier-Stokes solver. This wave generation method is designed to reproduce the target focused wave by matching the target amplitude spectrum and phase angle. A 4-waves decomposition scheme is utilized to obtain the linearised component of the output wave. A model test studying the interaction between different focused waves and a fixed cylinder is selected as the target for the wave generation approach. The numerical wave elevations and dynamic pressure on the cylinder are compared with the experimental measurement and other state-of-the-art numerical methods' results. The overall results prove that the iterative adjustment method is able to optimize the focused wave generated by a CFD approach.