• 제목/요약/키워드: Wave Horizontal Velocity

검색결과 116건 처리시간 0.026초

금강 하구 천해성 퇴적층의 연약지반에 관한 연구: 표면파 역산에 의한 S파 속도구조와 해상도 (A Study on the Soft Reclaimed Lands Composed of Shallow Ocean Sediments in Keum River Estuary: Two Dimensional S Wave Velocity and Resolution Obtained by Inverting Surface Waves)

  • 정희옥
    • 한국지구과학회지
    • /
    • 제22권3호
    • /
    • pp.179-185
    • /
    • 2001
  • 토양이나 암반의 물성을 조사하기 위하여 시추공조사가 흔히 이루어진다. 그러나 시추조사의 결과는 불연속적이고 시추공과 시추공 사이의 물성은 두 시추공의 조사결과를 내삽하여 구할 수 밖 에 없다. 그러나 이러한 내삽법을 이용한 해석은 지반의 수평적 변화가 심하지 않은 경우에만 가능하다. 연약지반의 연속적인 2차원 S파 속도구조를 구하기 위하여 표면파 역산 방법을 사용하였다. 역산 결과를 해석하기 위하여 역산 결과의 해상도를 역산 결과와함께 제시하였다.

  • PDF

지반의 전단파 속도를 고려한 동적 수평지반반력계수와 보정계수(α) 분석 (Analysis of Coefficient of Dynamic Horizontal Subgrade Reaction and Correlation Factor (α) Considering Shear Wave Velocity of Soil)

  • 김건우;임현성;송수민;정상섬
    • 한국지반공학회논문집
    • /
    • 제36권11호
    • /
    • pp.7-20
    • /
    • 2020
  • 본 연구에서는 말뚝기초를 대상으로 지반조건을 고려한 동적 수평지반반력계수를 제안하기 위하여 수치해석을 수행하였다. 3차원 유한차분 프로그램을 사용하여, 다양한 지반의 전단파 속도에 따라 동적수치해석을 수행하였다. 수치해석 결과로부터 동적 p-y 곡선을 도출하여 동적 수평지반반력계수를 계산하는 데 필요한 보정계수(α)를 산정하였다. 분석결과, 본 연구에서 산정된 보정계수(α)는 기존 도로교 설계기준(2015)에 제시된 획일적인 값(α=2)이 아니라 지반의 전단파 속도와 구속압에 매우 큰 영향을 받는 것을 알 수 있었으며 이를 고려한 함수식으로 제안하였다. 제안된 α의 적용성 분석을 위해 서로 다른 해석 기법(등가정적해석방법과 동적해석방법)에서의 적용성을 비교하였다. 그 결과, 제안된 보정계수(α)를 사용하는 방법은 기존 동적 수평지반반력계수를 사용하는 방법에 비해 지반-말뚝 시스템의 수평거동 특성을 비교적 적절하게 예측함을 알 수 있었다.

Experimental Study on Nonlinearity Characteristics Near the Free Surface in the Regular Wave Condition

  • Choi, Hae-Jin;Jung, Kwang-Hyo;Suh, Sung-Bu;Jo, Hyo-Jae;Choi, Han-Suk
    • 한국해양공학회지
    • /
    • 제24권1호
    • /
    • pp.1-9
    • /
    • 2010
  • A series of experiments employing particle image velocimetry (PIV) technique was conducted to produce benchmark wave kinematics data for regular waves having four different wave slopes in 2-D wave tank. Water velocities and accelerations near the free surface of regular waves were computed from image pair obtained by PIV systems. With the measured wave velocity field, the wave accelerations were computed using a centered finite difference scheme. Both local and convective components of the total accelerations are obtained from experimental data. With increasing the wave slope, the horizontal velocity and the vertical accelerations near the wave crest obtained by PIV technique became larger than theoretical results, which are well-known phenomena of the wave nonlinearity. It is noted that the relative magnitude of convective acceleration to the local acceleration became larger with increasing wave slope.

회전요동하는 원통내의 유동특성 - 이론적 해석 (Fluid Flow in a Circular Cylinder Subject to Circulatory Oscillation-Theoretical Analysis)

  • 서용권;김현민
    • 대한기계학회논문집B
    • /
    • 제20권12호
    • /
    • pp.3960-3969
    • /
    • 1996
  • A fluid flow inside a circular cylinder subject to horizontal and circular oscillation is analyzed theoretically. Under the assumption of small-amplitude oscillation, the governing equations take linear forms. The velocity field is obtained in terms of the first kind of Bessel function of order 1. It was found that a particle describes an orbit close to a circle in the central region and an arc near the side wall. We also obtained the Stokes' drift velocity induced by the traveling wave along the circumferential direction. The Eulerian streaming velocities at the edge of the bottom and side boundary layers were also obtained. It was shown that the vertical component of the steady streaming velocity on the side wall is almost proportional to the amplitude of the free surface motion.

점탄성 유동벽면의 파동 감쇠 특성 해석 (Analysis of Wave Decay Characteristics of Viscoelastic Compliant Coating)

  • ;정광효;전호환;이인원
    • 대한기계학회논문집B
    • /
    • 제30권12호
    • /
    • pp.1155-1163
    • /
    • 2006
  • Calculation was carried out for phase velocity and deformation wave decay in a layer of viscoelastic material fixed tightly on the solid substrate. Analysis has been performed regarding the inner structure of the wave, i.e., the proportions between the vertical and horizontal displacements and their profiles. The wave characteristics depend strongly on media compressibility factor. The effect of viscous losses on parameters of the main oscillation mode was studied in detail. Results were compared with the model of coating with local deformation. A new experimental approach was made in order to measure such wave properties of a compliant coating as the dependency of deformation wave velocity on frequency and decay factor was made. The method for estimation of coating parameters enabling the drag reduction in turbulent flow was then refined.

다방향 쇄파 발생 전후의 파랑 성분간 에너지 전이 및 소산 (Energy Dissipation and Transfer among Wave Components during Directional Breaking Processes)

  • 홍기용;에스똘히오메자
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.1-6
    • /
    • 2003
  • Wave energy dissipation and energy transfer between wave components, during the directional wave breakings, are investigated. Directional incipient and plunging breakers were generated by focusing the multi-frequency and multi-directional wave components at a designed location, based on a constant wave amplitude and a constant wave steepness frequency spectrum. The time series of surface wave elevation was measured at 9 different locations around the wave focusing point, using a wave gauge array. In order to examine the variation of the directional spreading function, the horizontal velocity of fluid motion was also measured. By comparing energy spectrums, before and after the breaking, the characteristics of energy dissipation and energy transfer, caused by wave breaking, are investigated. Their dependencies on directionality, as well as frequency, are analyzed. The breakings significantly dissipate wave energy, through energy transfer, in the upper region of the peak-frequency band, while enhancing wave energy in the low-frequency band.

불규칙파에 의한 월파량산정의 수치해석법 (Numerical analysis for Estimation of Overtopping Rate by using Irregular Wave)

  • 김도삼;김창훈;이민기;김지민
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.373-376
    • /
    • 2006
  • In general, a method for generating irregular wave by combination of component waves obtained from linear wave theory is widely used. In these method, however, mean water surface elevation is rising from time to time because of nonlinear effect of wave. In this study, for the rising problem of mean water surface elevation and stabilization of calculation from time to time, mass transport velocity for horizontal velocity at wave source position is considered. The rising problem of mean water surface elevation is checked by comparing calculated wave profile from numerical technique proposed in this study with target wave profile at wave source position in numerical wave tank by using CADMAS-SURF code. And, by generating irregular wave, the validity of wave overtopping rate estimated from this numerical analysis is discussed by comparing computed results with measured results in hydraulic model experiments for vertical seawall located on a sloping sea bottom. As a results, the computations are validated against the previously experimental results by hydraulic model test and numerical results of this study and a good agreement is observed. Therefore, numerical technique of this study is a powerful tool for estimating wave overtopping rate over the crest of coastal structure.

  • PDF

기포영상유속계와 복합파고계를 활용한 경사식 호안 전면에서 쇄파의 형태에 따른 충격쇄파압의 분류 (Experimental Study on Impact Pressure at the Crown Wall of Rubble Mound Seawall and Velocity Fields using Bubble Image Velocimetry)

  • 나병준;고행식
    • 한국해안·해양공학회논문집
    • /
    • 제34권4호
    • /
    • pp.119-127
    • /
    • 2022
  • 본 연구에서는 테트라포드로 피복된 경사식 마운드 위의 직립벽에 작용하는 충격쇄파압을 쇄파 형태에 따라 구분하기 위해 규칙파를 생성하고 충돌 직전의 유속장과 기포분율을 측정하였다. 유속장 측정을 위해 쇄파 중 발생하는 기포의 움직임을 추적하는 기포영상유속계를 사용하고 기포분율 측정을 위해 복합파고계 기법(Na and Son, 2021)을 활용하였다. 측정된 입사파의 주기가 짧을수록 최대평균유속은 사면에서 파속에 비해 적은 감소율을 보였지만 파랑이 사면을 따라 진행하며 쇄파가 더 빨리 발생하여 기포분율이 증가하였고 결과적으로 중복파압형태의 파압이 작용하였다. 주기가 큰 실험파의 경우 충돌 전 유입되는 공기가 적어 flip-through 형태(Cooker and Peregrine, 1991)의 흐름양상을 보였고, 파압이 급격하게 증가함을 확인할 수 있었다.

Hydrodynamic forces on blocks and vertical wall on a step bottom

  • Mondal, Ramnarayan;Alam, Md. Mahbub
    • Wind and Structures
    • /
    • 제30권5호
    • /
    • pp.485-497
    • /
    • 2020
  • A study, using potential water wave theory, is conducted on the oblique water wave motion over two fixed submerged rectangular blocks (breakwaters) placed over a finite step bottom. We have considered infinite and semi-infinite fluid domains. In both domains, the Fourier expansion method is employed to obtain the velocity potentials explicitly in terms of the infinite Fourier series. The unknown coefficients appearing in the velocity potentials are determined by the eigenfunction expansion matching method at the interfaces. The derived velocity potentials are used to compute the hydrodynamic horizontal and vertical forces acting on the submerged blocks for different values of block thickness, gap spacing between the two blocks, and submergence depth of the upper block from the mean free surface. In addition, the wave load on the vertical wall is computed in the case of the semi-infinite fluid domain for different values of blocks width and the incident wave angle. It is observed that the amplitudes of hydrodynamic forces are negligible for larger values of the wavenumber. Furthermore, the upper block experiences a higher hydrodynamic force than the lower block, regardless of the gap spacing, submergence depth, and block thickness.

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib;Harichane, Zamila;Berkane, Hakima Djilali;Sadouk, Amina
    • Earthquakes and Structures
    • /
    • 제12권2호
    • /
    • pp.153-163
    • /
    • 2017
  • The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.