DOI QR코드

DOI QR Code

Soil and structure uncertainty effects on the Soil Foundation Structure dynamic response

  • Guellil, Mohamed Elhebib (Geomaterials Laboratory, Civil Engineering Department, Hassiba Benbouali University of Chlef) ;
  • Harichane, Zamila (Geomaterials Laboratory, Civil Engineering Department, Hassiba Benbouali University of Chlef) ;
  • Berkane, Hakima Djilali (Geomaterials Laboratory, Civil Engineering Department, Hassiba Benbouali University of Chlef) ;
  • Sadouk, Amina (Geomaterials Laboratory, Civil Engineering Department, Hassiba Benbouali University of Chlef)
  • Received : 2016.06.29
  • Accepted : 2016.11.29
  • Published : 2017.02.25

Abstract

The underlying goal of the present paper is to investigate soil and structural uncertainties on impedance functions and structural response of soil-shallow foundation-structure (SSFS) system using Monte Carlo simulations. The impedance functions of a rigid massless circular foundation resting on the surface of a random soil layer underlain by a homogeneous half-space are obtained using 1-D wave propagation in cones with reflection and refraction occurring at the layer-basement interface and free surface. Firstly, two distribution functions (lognormal and gamma) were used to generate random numbers of soil parameters (layer's thickness and shear wave velocity) for both horizontal and rocking modes of vibration with coefficients of variation ranging between 5 and 20%, for each distribution and each parameter. Secondly, the influence of uncertainties of soil parameters (layer's thickness, and shear wave velocity), as well as structural parameters (height of the superstructure, and radius of the foundation) on the response of the coupled system using lognormal distribution was investigated. This study illustrated that uncertainties on soil and structure properties, especially shear wave velocity and thickness of the layer, height of the structure and the foundation radius significantly affect the impedance functions, and in same time the response of the coupled system.

Keywords

References

  1. Ahmed, S. and Rupani, A.K. (1999), "Horizontal impedance of square foundation in layered soil", Soil Dyn. Earthq. Eng., 18(1), 59-69. https://doi.org/10.1016/S0267-7261(98)00028-1
  2. Anastasopoulos, I. and Kontoroupi, T. (2014), "Simplified approximate method for analysis of rocking systems accounting for soil inelasticity and foundation uplifting", Soil Dyn. Earthq. Eng., 56, 28-43. https://doi.org/10.1016/j.soildyn.2013.10.001
  3. Applied TechnologyCouncil (1984), Tentative Provisions for the Development of Seismic Regulations for Buildings, ATC-3-06: California.
  4. Aydemir, M.E. and Aydemir, C. (2016), "Overstrengh factors for SDOF and MDOF systems with soil structure interaction", Earthq. Struct., 10(6), 1273-1289. https://doi.org/10.12989/eas.2016.10.6.1273
  5. Baecher, G.R. and Christian, J.T. (2003), Reliability and statistics in geotechnical engineering, John Wiley & Sons Ltd, England.
  6. Bargman, H. (1997), "The role of stochastic modelling in engineering science", Acta Mechanica, 125(1-4), 63-71. https://doi.org/10.1007/BF01177299
  7. Celebi, E., Firat, S. and Cankaya, I. (2006), "The evaluation of impedance functions in the analysis of foundations vibrations using boundary element method", Appl. Math. Comput., 173(1), 636-667. https://doi.org/10.1016/j.amc.2005.04.006
  8. Cottereau, R., Clouteau, D. and Soize, C. (2008), "Probabilistic impedance of foundation: Impact of the seismic design on uncertain soils", Earthq. Eng. Struct. Dyn., 37(6), 899-918. https://doi.org/10.1002/eqe.794
  9. Dasgupta, G. (2008), "Stochastic shape function and stochastic strain-displacement matrix for a stochastic finite element stiffness matrix", Acta Mechanica, 195(1-4), 379-395. https://doi.org/10.1007/s00707-007-0569-y
  10. Dobry, R. (2014), "Simplified methods in soil dynamics", Soil Dyn. Earthq. Eng., 61-62, 246-268. https://doi.org/10.1016/j.soildyn.2014.02.008
  11. Dunn, W.L. and Shultis, J.K. (2012), Exploring Monte Carlo Methods, Ed. Elsevier, 384 pp.
  12. Durmus, A. and Livaoglu, R. (2015), "A simplified 3 D.O.F. model of A FEM model for seismic analysis of a silo containing elastic material accounting for soil- structure interaction", Soil Dyn. Earthq. Eng., 77, 1-14. https://doi.org/10.1016/j.soildyn.2015.04.015
  13. FEMA 440 (2005), Recommended Improvements of Nonlinear Static Seismic Analysis Procedures, Applied Technology Council: California.
  14. Gazetas, G. (1983), "Analysis of machine foundation vibrations: state of the art", Soil Dyn. Earthq. Eng., 2(1), 1-41.
  15. Gazetas, G. (1991), "Formulas and chart s for impedances of surface and embedded foundations", J. Geotech. Eng., 117(9), 1363-1381. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:9(1363)
  16. Gazetas, G. and Mylonakis, G. (1998), "Seismic soil-structure interaction: new evidence and emerging issues", Geotech. Earthq. Eng. Soil Dyn., 3, 1119-1174.
  17. Hryniewicz, Z. (2000), "Dynamic response of a bar embedded in semi-infinite medium: stochastic approach", Acta Mechanica, 143(3-4), 141-153. https://doi.org/10.1007/BF01170944
  18. Huber, M. (2013), "Soil variability and its consequences in geotechnical engineering", PhD. Thesis, Stuttgart University, Germany.
  19. Hyuk Chun, N. (2005), "Stochastic behavior of Mindlin plate with uncertain geometric and material parameters", Prob. Eng. Mech., 20(4), 296-306. https://doi.org/10.1016/j.probengmech.2005.06.001
  20. Jayalekshmi, B.R., Thomas, A. and Shivashankar, R. (2014), "Dynamic soil-structure interaction studies on 275m tall industrial chimney with opening", Earthq. Struct., 7(2), 233-250. https://doi.org/10.12989/eas.2014.7.2.233
  21. Jimenez, R. and Sitar, N. (2009), "The importance of distribution types on finite element analyses of foundation settlement", Comput. Geotech., 36(3), 474-483. https://doi.org/10.1016/j.compgeo.2008.05.003
  22. Jones, A.L., Kramer, S.L. and Arduino, P. (2002), Estimation of Uncertainty in Geotechnical Properties for Performance-Based Earthquake Engineering, PEER Report 2002/16, Pacific Earthquake Engineering Research Center College of Engineering University of California, Berkeley, USA.
  23. Kausel, E. (2010), "Early history of soil-structure interaction", Soil Dyn. Earthq. Eng., 30(9), 822-832. https://doi.org/10.1016/j.soildyn.2009.11.001
  24. Laudarin, F., Desceliers, C., Bonnet, G. and Argoul, P. (2013), "A non-parametric probabilistic model for soil-structure interaction", Comput. Mech., 52(1), 53-64. https://doi.org/10.1007/s00466-012-0797-4
  25. Lee, J.H., Kim, J.K. and Tassoulas, J.L. (2013), "Stochastic dynamic analysis of a layered half-space", Soil Dyn. Earthq. Eng., 48, 220-233. https://doi.org/10.1016/j.soildyn.2013.01.003
  26. Liou, G.S. and Chung, I.L. (2009), "Impedance matrices for circular foundation embedded in layered medium", Soil Dyn. Earthq. Eng., 29(4), 677-692. https://doi.org/10.1016/j.soildyn.2008.07.004
  27. Maheshwari, P. and Kashyap, D. (2011), "Stochastic analysis of beam on reinforced earth beds", Georisk, Taylor and Francis, 5(3-4), 207-217.
  28. Manolis, G.D. (2002), "Stochastic soil dynamic", Soil Dyn. Earthq. Eng., 22(1), 3-15. https://doi.org/10.1016/S0267-7261(01)00055-0
  29. Maravas, A. Mylonakis, G. and Karabalis, D.L. (2014), "Simplified discrete systems for dynamic analysis of structures on footings and piles", Soil Dyn. Earthq. Eng., 61-62, 29-39. https://doi.org/10.1016/j.soildyn.2014.01.016
  30. Meek, J.W. and Wolf, J.P. (1992a), "Cone models for homogeneous soil. I", J. Geotech. Eng., 118(5), 667-685. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:5(667)
  31. Meek, J.W. and Wolf, J.P. (1992b), "Cone models for soil layer on rigid rock. II", J. Geotech. Eng., 118(5), 686-703. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:5(686)
  32. Mehanny, S.S.F. and Ayoub, A.S. (2008), "Variability in inelastic displacement demands: Uncertainty in system parameters versus randomness in ground records", Eng. Struct., 30(4), 1002-1013. https://doi.org/10.1016/j.engstruct.2007.06.009
  33. Menglin, L.W., Huaifeng, C. Xi and Yongmei, Z. (2011), "Structure-soil-structure interaction: Literature review", Soil Dyn. Earthq. Eng., 31(12), 1724-1731. https://doi.org/10.1016/j.soildyn.2011.07.008
  34. Moghaddasi, M., Cubrinovski, M., Pampanin, S., Carr, A. and Chase, J.G. (2009), "Monte Carlo simulation of SSI effects using simple rheological soil model" 2009 NZSEE Conference.
  35. Moghaddasi, M., Cubrinovski, M., Chase, J.G., Pampanin, S. and Carr, A. (2011), "Effects of soil-foundation-structure interaction on seismic structural response via robust Monte Carlo simulation", Eng. Struct., 33(4), 1338-1347. https://doi.org/10.1016/j.engstruct.2011.01.011
  36. Nobahar, A. (2003), "Effects of soil spatial variability on soilstructure interaction", Ph.D thesis, University St. John's Newfoundland, Canada.
  37. Pena Ruiz, D. and Guzman Gutierrez, S. (2014), "Finite element methodology for the evaluation of soil damping in LNG tanks supported on homogeneous elastic half space", Bull. Earthq. Engineer, Springer.
  38. Phoon, K.K. and Kulhawy, F.H. (1999), "Evaluation of geotechnical property variability", Can. Geotech. J., 36(4), 625-639. https://doi.org/10.1139/t99-039
  39. Pitilakis, D. (2006), "Soil-structure interaction modeling using equivalent linear soil behavior in the substructure method", PhD. Thesis, Ecole Centrale Paris, France.
  40. Popescu, R., Deodatis, G. and Nobahar, A. (2005), "Effects of random heterogeneity of soil properties on bearing capacity", Prob. Eng. Mech., 20(4), 324-341. https://doi.org/10.1016/j.probengmech.2005.06.003
  41. Pradeep Kumar, P. and Maheshwari, P. (2013), "Stochastic analysis of strip footing on elastic layered soil", Korean Soc. Civ. Engineer., 17(7), 1621-1629.
  42. Pradhan, P.K., Baidya, D.K. and Ghosh, D.P. (2004), "Dynamic response of foundation resting on layered soil by cone model", Soil Dyn. Earthq. Eng., 24(6), 425-434. https://doi.org/10.1016/j.soildyn.2004.03.001
  43. Pradhan, P.K., Mandal, A., Baidya, D.K. and Ghosh, D.P. (2008), "Dynamic response of machine foundation on layered soil", Geotech. Geol. Eng., 26(4), 453-468. https://doi.org/10.1007/s10706-008-9181-8
  44. Raychowdhury, P. and Jindal, S. (2014), "Shallow foundation response variability due to soil and model parameter uncertainty", Front Struct. Civ. Eng., 8(3), 237-251. https://doi.org/10.1007/s11709-014-0242-1
  45. Renzi, S., Madiai, C. and Vannucchi, G. (2013), "A simplified empirical method for assessing seismic soil-structure interaction effects on ordinary shear-type buildings", Soil Dyn. Earthq. Eng., 55, 100-107. https://doi.org/10.1016/j.soildyn.2013.09.012
  46. Sadouki, A., Harichane, Z. and Chehat, A. (2012), "Response of a randomly inhomogeneous layered media to harmonic excitations", Soil Dyn. Earthq. Eng., 36, 84-95. https://doi.org/10.1016/j.soildyn.2012.01.007
  47. Safak, E. (2006), "Time-domain representation of frequencydependent foundation impedance functions", Soil Dyn. Earthq. Eng., 26(1), 65-70. https://doi.org/10.1016/j.soildyn.2005.08.004
  48. Salcher, P. and Adam, C. (2015), "Modeling of dynamic trainbridge interaction in high-speed railways", Acta Mechanica, 226(8), 2473-2495. https://doi.org/10.1007/s00707-015-1314-6
  49. Scherer, R.J. and Faschingbauer, G. (2005), "Stochastic moments of seismic waves in stochastic homogeneous and heterogeneous media", Proceedings ICOSSAR (2005).
  50. Soesilo J.A. (1997), Site Remediation: Planning and Management Popular Online, CRC Press.
  51. Stewart, J.P., Fenves, G.L. and Seed, R.B. (1999), "Seismic soilstructure interaction in buildings. I: Analytical aspects", J. Geotech. Geoenviron. Eng., ASCE, 125(1), 26-37. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:1(26)
  52. Tanizaki, H. (2004), Computational Methods in Statistics and Econometrics, Mercel Dekker, INC, 512p.
  53. Wolf, J.P. (1994), Foundation vibration analysis using simple physical models, Prentice-Hall, Upper Saddle River, NJ.
  54. Yan Xiaorong (2012), "Soil-structure interaction under multidirectional earthquake loading", Ph.D. thesis, The university of Hong Kong, China.
  55. Yazdchi, M. Khalili, N. and Valliapan, S. (1999), "Dynamic soilstructure interaction analysis via coupled finite-elementboundary-element-method", Soil Dyn. Earthq. Eng., 18(7), 499-517. https://doi.org/10.1016/S0267-7261(99)00019-6
  56. Zhang, C. and Wolf, J.P. (1998), Dynamic soil-structure interaction, Elsevier science, Netherlands.

Cited by

  1. Benefits of Probabilistic Soil-Foundation-Structure Interaction Analysis vol.9, pp.1, 2018, https://doi.org/10.4018/IJGEE.2018010103
  2. Investigation of Soil Layers Stochasticity Effects on the Spatially Varying Seismic Response Spectra pp.2277-3347, 2019, https://doi.org/10.1007/s40098-018-0301-y
  3. Response of anisotropic porous layered media with uncertain soil parameters to shear body-and Love-waves vol.14, pp.4, 2018, https://doi.org/10.12989/eas.2018.14.4.313
  4. Response of circular footing on dry dense sand to impact load with different embedment depths vol.14, pp.4, 2017, https://doi.org/10.12989/eas.2018.14.4.323
  5. Reliability-based design of tuned-mass dampers with soil−structure interaction vol.172, pp.1, 2017, https://doi.org/10.1680/jencm.17.00018
  6. Seismic fragility and risk assessment of an unsupported tunnel using incremental dynamic analysis (IDA) vol.16, pp.6, 2019, https://doi.org/10.12989/eas.2019.16.6.705
  7. Site dependent and spatially varying response spectra vol.18, pp.3, 2019, https://doi.org/10.1007/s11803-019-0517-6
  8. Effects of Soil Parameters Uncertainties on the Behaviour of Anisotropic Porous Media to Shear Waves : vol.10, pp.2, 2019, https://doi.org/10.4018/ijgee.2019070103
  9. Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground vol.22, pp.4, 2017, https://doi.org/10.12989/gae.2020.22.4.339
  10. SSI effects on the redistribution of seismic forces in one-storey R/C buildings vol.20, pp.3, 2021, https://doi.org/10.12989/eas.2021.20.3.261
  11. Experimental Study of the Effect of Proximity between Adjacent Buildings on their Dynamic Response vol.21, pp.4, 2017, https://doi.org/10.1142/s0219455421500486