• Title/Summary/Keyword: Wave Exciting Force

Search Result 50, Processing Time 0.026 seconds

A Nonlinear Response Analysis of Tension Leg Platforms in Irregular Waves (불규칙파중의 인장계류식 해양구조물의 비선형 응답 해석)

  • Lee, Chang-Ho;Gu, Ja-Sam;Jo, Hyo-Je;Hong, Bong-Gi
    • Journal of Ocean Engineering and Technology
    • /
    • v.12 no.2 s.28
    • /
    • pp.33-42
    • /
    • 1998
  • In the presence of incident waves with different frequencies, the second order sum and difference frequency waves due to the nonlinearity of the incident waves come into existence. Although the magnitudes of the forces produced on a Tension Leg Platform(TLP) by these nonlinear waves are small, they act on the TLP at sum and difference frequencies away from those of the incident waves. So, the second order sum and difference frequency wave loads produced close to the natural frequencies of TLPs often give greater contributions to high and low frequency resonant responses. The second order wave exciting forces and moments have been obtained by the method based on direct integration of pressure acting on the submerged surface of a TLP. The components of the second order forces which depend on first order quantities have been evaluated using the three dimensional source distribution method. The numerical results of time domain analysis for the nonlinear wave exciting forces in regular waves are compared with the numerical ones of frequency domain analysis. The results of comparison confirmed the validity of the proposed approach.

  • PDF

Hydrodynamic Forces on a Two-dimensional Cylinder in Shallow Water (천수역에 놓인 2차원 주상체에 수평방향으로 작용하는 동유체력에 관한 고찰)

  • Hang-S.,Choi
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.21-26
    • /
    • 1986
  • An analysis is made of hydrodynamic forces acting horizontally on a two-dimensional cylinder, when it is exposed to incident waves and consequently undergoes a swaying motion in shallow water. Applying the method of matched asymptotic expansions the added mass, wave damping and the wave exciting force are obtained in terms of the difference in potential across the cylinder in a simple manner. The potential jump is related to the so-called blockage coefficient which is determined purely from geometry. It is found that the wave damping coefficient can not exceed the blockage coefficient.

  • PDF

Study on the Reduction of Wave Exciting Forces Acting on a Pontoon Type Floating Structure by Submerged Plate (몰수평판에 의한 폰툰형 부유체에 작용하는 파랑강제력의 감소현상에 관한 연구)

  • Lee, Sang-Min;Lee, Won-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.13 no.3
    • /
    • pp.213-217
    • /
    • 2007
  • Pontoon type very large floating structure has been considered and actively studied as one of the most important ocean space utilization. The hydroelastic displacement of the pontoon type floating structure in waves is the largest at its weather side. The purpose of this study is to investigate the characteristics and effects of the submerged horizontal plate which is developed to reduce the wave exciting forces acting on the pontoon type floating structure using numerical analysis. The numerical method based on the finite difference method has been adopted and compared with the experimental data to confirm the reliability of it. We have performed the numerical computation of wave exciting forces acting on the pontoon type floating structure with/without submerged plate and discuss the results of simulation.

  • PDF

Theoretical Study on the Dynamic Response of a Moored Buoy with Minimum Vertical Wave-exciting Force in Irregular Waves (수직운동(垂直運動)이 최소(最小)인 부표(浮標)의 불규칙파(不規則波)중 계류상태(繫留狀態)에 대한 동력학적(動力學的) 해석(解析))

  • H.S.,Choi;Hyo-Chul,Kim;Woo-Jae,Seong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 1984
  • A body form, which experiences minimum vertical wave-exciting forces in the vicinity of a prescribed wave frequency in water of finite depth, is obtained by an approximate method. Its configuration has the symmetry with respect to the vertical axis, expressed in terms of exponential functions. By distributing three-dimensional pulsating sources and dipoles on the immersed surface of the body, a velocity potential is determined and subsequently hydrodynamic forces including the 2nd-order time-mean drift forces are calculated. The dynamic behavior of the body moored in irregular waves is investigated numerically by using central difference method. Hereby irregular wave trains are simulated with examining its repeatability by comparing the resulting spectrum with original one. Numerical results indicated that the body form obtained from the present analysis possesses in general a favorable hydrodynamic characteristics in comparison with a spherical buoy and that the maximum excursion of the body can be significantly reduced by setting pre-tension of an appropriate amount in the mooring cable.

  • PDF

Wave Force Analysis of the Three Vertical Cylinders in Water Waves

  • Kim, Nam-Hyeong;Cao, Tan Ngoc Than
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.543-552
    • /
    • 2008
  • The diffraction of waves by three bottom fixed vertical circular cylinders is investigated by using the boundary element method. This method has been successfully applied to the isolated vertical circular cylinder and now is used to study the interaction between waves and multiple vertical cylinders. In this paper, a numerical analysis by the boundary element method is developed by the linear potential theory. The numerical analysis by the boundary element method is based on Green's second theorem and introduced to an integral equation for the fluid velocity potential around the vertical circular cylinders. To verify this method, the results obtained in present study are compared with the results computed by the multiple scattering method. The results of the comparisons show strong agreement. Also in this paper, several numerical examples are given to illustrate the effects of various parameters on the wave exciting force such are the separation distance, the wave number and the incident wave angle. This numerical computation method might be used broadly for the design of various offshore structures to be constructed in the future.

Depth Controller Design for Submerged Body Moving near Free Surface Based on Adaptive Control (적응제어기법을 이용한 수면근처에서 운항하는 몰수체의 심도제어기 설계)

  • Park, Jong-Yong;Kim, Nakwan;Yoon, Hyeon Kyu;Kim, Su Yong;Cho, Hyeonjin
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.270-282
    • /
    • 2015
  • A submerged body moving near the free surface needs to maintain its attitude and position to accomplish missions. It is necessary to validate the performance of a designed controller before a sea trial. The hydrodynamic coefficients of maneuvering are generally obtained by experiments or computational fluid dynamics, but these coefficients have uncertainty. Environmental loads such as the wave exciting force and suction force act on the submerged body when it moves near the free surface. Thus, a controller for the submerged body should be robust to parameter uncertainty and environmental loads. In this paper, the six-degree-of-freedom equations of motions for the submerged body are constructed. The suction force is calculated using the double Rankine body method. An adaptive control method based on an artificial neural network and proportional-integral-derivative control are used for the depth controller. Simulations are performed under various depth and speed conditions, and the results show the effectiveness of the designed controller.

A Fundamental Study on the Transverse Stability of Ships in Following Seas (추파중에서 항행하는 선박의 복원성능에 관한 기초적 연구)

  • 윤진동;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.11 no.2
    • /
    • pp.61-72
    • /
    • 1987
  • When a ship is running in following seas, the encounter frequency is reduced to a very low one. In that case broaching, surfiding and capsizing phenomena are most likely to occur due to wave exciting forces acting on a ship in following seas. In this paper, the emphasis is mainly laid upon transverse stability of ships following seas, which is related to capszing phenomenon. The authors take the case that ship speed is equal to the wave celerity, i.e., the encounter frequency is zero. Hydrostatic force and moment due to Froude-Krylov hypothesis are calculated by line intergral method. Transverse stability is evaluated from hydrostatic force and moment. Through the application of present calculation method to box-shaped vessel, it is confirmed that the transversestability of a vessel can be reduced to critical level at wave crest.

  • PDF

On the Behavior of Membrane Breakwaters in Waves (파랑중 막 구조 방파제의 거동 특성)

  • Cho, I.H.
    • Journal of Korean Port Research
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 1994
  • The wave interaction with flexible membrane such as PVC and fabrics is studied to prove its applicability to portable breakwaters. To obtain the wave exciting force acting on flexible membrane, eigen-function expansion method is employed. The effect of flexible is involved in body boundary condition in which x-directional displacement of membrane is obtained by solving the linear membrane equation. Displacement of membrane is assumed to be small compared to wavelength, therefore the tensile force of membrane remains constant. As the numerical examples, transmission and reflection coefficients according to the change of tensile forces are investigated. The hydrodynamic force on membrane, the dynamic tension in the mooring lines and the vertical displacement profile of membrane are also calculated. It is suggested that the flexible membrane can be used to engineering material for the future coastal/ocean applications.

  • PDF

Frequency Domain Analysis for Dynamic Response of Floating Structures Subject to Wave Loading (파랑하중을 받는 부유식 구조물의 동적거동에 대한 주파수영역 해석)

  • Kwon Jang Sub;Paik In Yeol;Park Jung Il;Chang Sung Pil
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.138-148
    • /
    • 2005
  • Dynamic response of floating structures such as floating body and floating bridges subject to wave load is to be calculated in frequency domain. Added mass coefficient, damping coefficient and wave exciting force are obtained numerically from frequency domain formulation of linear potential theory and boundary element method for a floating body which is partially submerged into water and subjected to wave force. Next, the equation of motion for the dynamic behavior of a floating structure which is supported by the floating bodies and modeled with finite elements is written in frequency domain. hker a hemisphere is analyzed and compared with the published references as examples of floating bodies, the hydrodynamic coefficients for a pontoon type floating body which supports a floating bridge are determined. The dynamic response of the floating bridge subject to design wave load can be solved using the coefficients obtained for the pontoons and the results are plotted in the frequency domain. It can be seen from the example analysis that although the peak frequency of the incoming wave spectrum is near the natural frequency of the bridge, the response of the bridge is not amplified due to the effect that the peak frequency of wave exciting force is away from the natural frequency of the bridge.

A Study on the Motion Responses and the Drift Forces of Semi-Submersible Drilling Rigs in the Damaged Condition (손상 상태에서의 반잠수식 해양구조물의 운동 응답 및 표류력에 관한 연구)

  • Park, Rho-Sik;Kim, Seong-Keun;Kim, Jong-Hyeon
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.27-36
    • /
    • 1988
  • For the purposes of drilling oil field and extracting oil deep water in more rough weather, the size of drilling rigs must be estimated. In this paper, the three dimensional source distribution method is used and we assume 10 deg. heeling and trimming condition of the drilling rig(SR-192). Also, the effects of the hydrodynamic forces which include the drift forces for field method, and the motion responses are studied with changing the incident wave direction in the assumed inclining condition. The theory and numerical codes used in this thesis appeared to be very useful for the preliminary design of drilling rigs.

  • PDF