• Title/Summary/Keyword: Watershed division

Search Result 406, Processing Time 0.021 seconds

The Estimation of Pollution Loads in First-flush Overflows with Various Rainfall and Regional Characteristics (강우 및 지역특성별 초기우수월류에 의한 오염부하 기여도 평가)

  • Kim, Hongtae;Shin, Dongseok;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.622-631
    • /
    • 2014
  • The purpose of this research was to find a proper disposal rainfall extent to improve water quality. SWMM was applied to select catchment area and tested first flush load and rainfall extent. BOD 40mg/L was selected to dispose the first flush and sewer overflow with the same as the criteria of Sewerage Act. Design rainfall, BOD load ratio of first flush sewer overflow, and the ratio of disposal flow were analyzed under various rainfall distribution. BOD load and design rainfall to treat overflow in situation of first flush extent with 4.3~17.4% were 56~87% and 3.8~6.8 mm/day, respectively. In urban area, first flush loads were not correspond to land activities, but tend to increase with increasing rainfall amount and drainage area. The more the distribution of rainfall is similar to Huff-frontal or central distribution of rainfall, the more increase the first flush loads.

Characteristics of Nutrient Export from Paddy Rice Fields with Irrigation Practices (관개수원에 따른 논에서의 영양물질 배출 특성)

  • Hwang, Ha-Sun;Kong, Dong Soo;Shin, Dong-Suk;Jeon, Ji-Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.597-602
    • /
    • 2004
  • Field experimental study was performed to examine characteristics of nutrient export from paddy rice fields with irrigation practices. Experimental fields with surface-water and ground-water irrigation were monitored and analyzed during rice culture period. The water balance showed that outflow generally balanced the inflow showing that about half (58~68%) of total outflow was lost by surface drainage. Water and nutrient export are more in surface-water irrigation paddy than in ground-water irrigation paddy. The reasons might be more irrigation water available and easy to use in surface-water irrigation. If irrigation water reduced, it could result in reduction of nutrient export in paddy rice fields, which can save water and protect water quality. However, deviation from conventional standard practices might affect the rice yield and further investigations are necessary.

A Study on Spatial Prediction of Water Quality Constituents Using Spatial Model (공간모형을 이용한 수질오염물질의 공간적 예측 및 평가에 대한 연구)

  • Kang, Taegu;Lee, Hyuk;Kang, Ilseok;Heo, Tae-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.409-417
    • /
    • 2014
  • Spatial prediction methods have been useful to determine the variability of water quality in space and time due to difficulties in collecting spatial data across extensive spaces such as watershed. This study compares two kriging methods in predicting BOD concentration on the unmonitored sites in the Geum River Watershed and to assess its predictive performance by leave-one-out cross validation. This study has shown that cokriging method can make better predictions of BOD concentration than ordinary kriging method across the Geum River Watershed. Challenges for the application of cokriging on the spatial prediction of surface water quality involve the comparison of network-distance-based relationship and euclidean-distance-based relationship for the improvement in the predictive performance.

Runoff Estimation Considering Dividing Watershed (유역 분할을 고려한 유출량 산정)

  • Lee, Jong-Hyeong;Yoon, Seok-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.57-66
    • /
    • 2007
  • The purpose of this study is both the variation of hydrologic topographical informations extracted by using WMS and the quantitative effect of rainfalll-runoff simulation due to dividing watershed. Miho stream basin in Geum river was selected by this study. Watershed dividing method are determined by area, channel slope and channel length. Hydrological response of divided watershed using Clark method, SCS method and Snyder method was compared with actual measured flood hydrograph. As a results, area-based watershed dividing method are particularly suitable the hydrologic applications using SCS method. This study can be used as basic data for the phase of the runoff variation in Miho stream basin.

Development of water circulation status estimation model by using multiple linear regression analysis of urban characteristic factors (도시특성 요인의 다중선형회귀 분석을 이용한 물순환상태추정모델 개발)

  • Kim, Youngran;Hwang, Seonghwan;Lee, Yunsun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.6
    • /
    • pp.503-512
    • /
    • 2020
  • Identifying the water circulation status is one of the indispensable processes for watershed management in an urban area. Recently, various water circulation models have been developed to simulate the water circulation, but it takes a lot of time and cost to make a water circulation model that could adapt the characteristics of the watershed. This paper aims to develop a water circulation state estimation model that could easily calculate the status of water circulation in an urban watershed by using multiple linear regression analysis. The study watershed is a watershed in Seoul that applied the impermeable area ratio in 1962 and 2000. And, It was divided into 73 watersheds in order to consider changes in water circulation status according to the urban characteristic factors. The input data of the SHER(Similar Hydrologic Element Response) model, a water circulation model, were used as data for the urban characteristic factors of each watershed. A total of seven factors were considered as urban characteristic factors. Those factors included annual precipitation, watershed area, average land-surface slope, impervious surface ratio, coefficient of saturated permeability, hydraulic gradient of groundwater surface, and length of contact line with downstream block. With significance probabilities (or p-values) of 0.05 and below, all five models showed significant results in estimating the water circulation status such as the surface runoff rate and the evapotranspiration rate. The model that was applied all seven urban characteristics factors, can calculate the most similar results such as the existing water circulation model. The water circulation estimation model developed in this study is not only useful to simply estimate the water circulation status of ungauged watersheds but can also provide data for parameter calibration and validation.

A Study on Cost Division Scheme Using Shapley Value for Integrated Watershed Management Planning for Anyang-cheon, Korea (Shapley Value를 이용한 안양천 유역 통합관리 계획에 따른 비용분담방안의 연구)

  • Song, Yang-Hoon;Yoo, Jin-Chae;Kong, Ki-Seo;Kim, Mi-Ok;An, So-Eun
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.3-19
    • /
    • 2010
  • Anyang-cheon(stream) runs through southern metropolitan area of Seoul to Han-river in Korea. Due to fast growth of Seoul, the water quality and quantity problems in Anyang-cheon have occurred. To cope with the problems, the Integrated Watershed Management program for Anyang-cheon was adopted and a KRW 26.1 billion (USD 21.8 million) pilot project (construction of 4 facilities such as reservoir) is suggested for 4 sub-watersheds of Anyang-cheon, which cost will be shared by the 12 local governments (LG). Three cost division schemes are compared. By Scheme 1, if the cost is borne by the LG in a watershed where the facilities are constructed (no cost division scheme), the LG in I is to bear 0.58% of the total construction cost, LG in watershed II 29.54%, LG in IV 0%, LG in V 69.88%. In particular, LG in IV in this scheme bears no cost because no facility is constructed, even though watershed IV is the major beneficiary of the facility construction. Scheme 2 is to share the cost by length of streams in each sub-watershed and the suggested cost share for each sub-watershed is 13.76% by I, 7.34% by II, 45.87% by IV, and 33.03% by V. However, this cost division scheme is fair only under the false assumption that the bargaining powers of group of LGs are identical. To suggest a better and fair division rule, Shapley Value, a cooperative game solution, is used to suggest Scheme 3. In Scheme 3, Shapley Value measures the summation of average marginal contribution of each player in all possible coalitions as cost division scheme and is known to provide a fair division considering bargaining power. In the context of Anyang-cheon, LGs in upper stream have superior bargaining position. The result suggests the cost division is fair under Scheme 3, when the cost shares are 0.29% by I, 14.77% by II, 50% by IV, and 34.94% by V, respectively.

  • PDF

A Study on Selection Method of Management Watershed for Total Pollution Load Control at Tributary (지류총량관리를 위한 관리유역 선정 방법에 관한 연구)

  • Hwang, Ha Sun;Lee, Sung Jun;Ryu, Jichul;Park, Ji Hyung;Kim, Yong Seok;Ahn, Ki Hong
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.6
    • /
    • pp.528-536
    • /
    • 2016
  • The purpose of Total Pollution Load Control at Tributary is to obtain maximum improvement effect of water quality through finding the most impaired section of water-body and establishing the proper control measure of pollutant load. This study was implemented to determine the optimal management of reach, period, condition, watershed, and pollution source and propose appropriate reduction practices using the Load duration curve (LDC) and field monitoring data. With the data of measurement, LDC analysis shows that the most impaired condition is reach V (G4~G5), E group (flow exceedance percentile 90~100%) and winter season. For this reason, winter season and low flow condition should be preferentially considered to restore water quality. The result of pollution analysis for the priority reach and period shows that agricultural nonpoint source loads from onion and garlic culture are most polluting. Therefore, it is concluded that agricultural reuse of surface effluent (storm-water runoff with non-point sources) and low impact farming that includes reducing fertilization and controlling the height of drainage outlet are efficient water quality management for this study watershed.

An Extraction of Geometric Characteristics Paramenters of Watershed by Using Geographic Information System (지형정보시스템을 이용한 하천유역의 형태학적 특성인자의 추출)

  • 안상진;함창학
    • Water for future
    • /
    • v.28 no.2
    • /
    • pp.115-124
    • /
    • 1995
  • A GIS is capable of extracting various hydrological factors from DEM(digital elevation model). One of important tasks for hydrological analysis is the division of watershed. It can be an essential factor among various geometric characteristics of watershed. In this study, watershed itself and other geometric factors of watershed are extracted from DEM by using GIS technique. The manual process of tasks to obtain geometric characteristics of watershed is automated by using the functions of ARC/INFO software as GIS package. Scanned data was used for this study and it is converted to DEM data. Various forms of representation of spatial data are handled in main module and GRID module of ARC/INFO. GRID module is used on a stream in order to define watershed boundary, so it would be possible to obtain the watersheds. Also, a flow direction, stream networks and orders are generated. The results show that GIS can aid watershed management and research and surveillance. Also the geometric characteristics parameters of watershed can be quantified with ease using GIS technique and the hardsome process can be automated.

  • PDF

Evaluation and Application of CLUE-S Model for Spatio-Temporal Analysis of Future Land use Change in Total Water Pollution Load Management System (오염총량관리제의 시공간적 미래 토지이용 변화분석을 위한 CLUE-S 모델의 적용 및 평가)

  • Ryu, Jichul;Ahn, Ki Hong;Han, Mideok;Hwang, Hasun;Choi, Jaewan;Kim, Yong Seok;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.4
    • /
    • pp.418-428
    • /
    • 2014
  • The purpose of this study is to predict the spatio-temporal changes in land uses and to evaluate land-based pollutant loads in the future under Total Water Pollution Load Management System using CLUE-S model. For these ends, sensitive parameters of conversion elasticities in CLUE-S model were calibrated and these calibrated parameters of conversion elasticities, level II land cover map of year 2009, and 7 driving factors of land use changes were used in predicting future land uses in 2002 with two scenarios(Scenario 1: non area restriction, Scenario 2: area restriction). This projected land use map of 2020 was used to estimate land-based pollutant loads. It was expected that urban areas will increase in 2020 from both scenarios 1 and 2. In Scenario 1, urban areas are expected to increase within greenbelt areas and deforest would be expected. Under Scenario 2, these phenomena were not expected. Also the results of estimation of BOD and TP pollutant loads, the BOD difference between scenarios 1 and 2 was 719 kg/day in urban areas and TP difference was 17.60 kg/day in urban areas. As shown in this study, it was found that the CLUE-S model can be useful in future pollutant load estimations because of its capability of projecting future land uses considering various socio-economic driving factors and area-restriction factors, compared with conventionally used land use prediction model.

Distribution Characteristics of Total Nitrogen Components in Streams by Watershed Characteristics (유역특성에 따른 하천에서의 존재형태별 질소 분포 특성 비교)

  • Park, Jihyoung;Sohn, Sumin;Kim, Yongseok
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.5
    • /
    • pp.503-511
    • /
    • 2014
  • The temporal and spatial analyses of total nitrogen (TN) fractionation were conducted in order to understand 1) total nitrogen components in streams and 2) their patterns in rainy and dry seasons. The result showed that the concentration of nitrogen components in stream water was lower in non-urban area and getting higher in urban area. Dissolved total nitrogen (DTN) was 95~97.7% of total nitrogen in streams, and the proportion of dissolved organic nitrogen (DON) and ammonia nitrogen ($NH_3-N$) was higher with increasing urban area. The concentration of total nitrogen and nitrate nitrogen ($NO_3-N$) were highest in winter among four seasons. The result was showed that concentration of $NH_3-N$ was same variation as concentrations of TN and $NO_3-N$ in urban-rural complex and urban areas, except rural areas. During rainy season, concentrations of particulate organic nitrogen (PON) and $NH_3-N$ increased in rural areas and decreased in both urban-rural complex and urban areas. Correlation between total nitrogen components and land uses was positively correlated with site > paddy, and negatively correlated with forest. The variation of total nitrogen concentration was determined by $NO_3-N$ in non-urban areas, by $NO_3-N$ and $NH_3-N$ in urban-rural complex and by $NH_3-N$ in the urban areas.