• Title/Summary/Keyword: Watershed division

Search Result 406, Processing Time 0.024 seconds

3D Face Modeling based on Image Using Watershed Transform (워터쉐드 변환을 이용한 영상기반의 3D 얼굴 모델링)

  • Shin, Hyun-Shil;Lee, Sang-Eun;Jang, Won-Dal;Yun, Tae-Soo;Yang, Hwang-Kyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05a
    • /
    • pp.535-538
    • /
    • 2003
  • 본 논문에서는 얼굴 영상으로부터 워터쉐드 변환을 이용하여 3차원 얼굴 모델을 구성하는 방법을 제안한다. 워터쉐드 변환으로 분할된 각각의 영역으로부터 얼굴의 특징점들을 추출하고 MPEG-4에서 정의해놓은 FDP(Facial Definition Parameter)를 기반으로 얼굴 메쉬모델을 생성한다. 워터쉐드 변환시 발생하는 영역 기반의 과분할 결과에서 얻어지는 정확한 정보와 MPEG-4의 FDP를 기반으로 한 Candide Model을 이용함으로써 매우 간편하게 3D 얼굴 모델을 생성할 수 있고 영상 압축 및 전송에 매우 효율적으로 이용될 수 있다.

  • PDF

Design of robust Medical Image Security Algorithm using Watershed Division Method (워터쉐드 분할 기법을 이용한 견고한 의료 영상 보안 알고리즘 설계)

  • Oh, Guan-Tack;Jung, Min-Six;Lee, Yun-Bae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.511-515
    • /
    • 2008
  • 디지털 워터마크 기법은 음악, 영상, 동영상에 대한 저작권과 재산권의 보호 및 인증, 데이터 손실 여부 판단, 복사 방지 및 추적 등을 목적으로 한 사후 재산권의 보호 기술로 제안되었다. 본 연구에서는 워터마크의 기하학적인 왜곡에 대한 공격에 견고하게 하도록 영상의 전 처리 과정을 거친다. 그리고 선택된 기하학적인 불변점을 골라 여러 가지 영상처리에 강인하며 일정 기간 압축 저장되는 영상에서도 워터마킹이 유지되도록 워터쉐드(watershed) 분할 기법을 이용한 의료 영상 보안 알고리즘을 제안한다. 본 논문에서 제안한 워터마킹 알고리즘은 의료 영상에 대한 RST 공격, JPEG 압축 공격 그리고 필터링 공격보다 강인함을 확인하였다.

  • PDF

Characteristics of Water and Environmental Qualities of Seho Watershed in Suwon City (수원시 서호천의 수질현황 및 환경질 특성)

  • Chi, Hong-Jin;Lee, Sang-Eun;Choi, Young-Keun;Lee, Jae-Dong
    • Journal of Environmental Science International
    • /
    • v.22 no.6
    • /
    • pp.733-744
    • /
    • 2013
  • This study was to investigate characteristics of Seoho watershed in Suwon city. $BOD_5$ and SS were selected due to the one of the important factors of the water qualities. Monitoring was conducted monthly for four years during the non-rainfall time. Also, we have been monitored $BOD_5$, $COD_{Mn}$, SS, TN and TP with two times sampling after the rainfalls. The highest concentrations of $BOD_5$ and SS were observed in downstream compare with upstream and midstream during the non-rainfall time. No change was observed in $BOD_5$ and $COD_{Mn}$ during the non-rainfall time and after the rainfalls. The monitoring result indicated that the concentration of SS was the highest in downstream after the rainfalls. We have collected the samples two times after the rainfalls. The rainfall intensity in first sampling was two times higher than second sampling. TN and TP concentrations were increased with increasing the rainfall intensity at all stream. The ESB (Ecological Score of Benthic macroinverterbrate community) index was used to evaluate the statement of stream. ESB results were identified that the upstream is protected waters and the down and midstream is reformed waters. EBS analysis results indicated that the Seoho watershed was ${\beta}$-mesosaprobic at all stream.

Structure and Seasonal Patterns of Ground Beetles Community in Wangpi-Cheon Watershed, South Korea

  • Park, Jinyoung;Jung, Jong Kook;Cha, Jin Yeol;Choi, Jong Bong;Park, Jong Kyun
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.41-51
    • /
    • 2020
  • Ground beetle fauna of Wangpi-cheon watershed in Yeongyang-gun to Uljin-gun, Gyeongsangbuk-do was investigated from May to October in 2012. Ground beetles were collected by pitfall trapping. A total of 38 species of 20 genera belonging to 8 subfamilies were identified from 2,486 collected ground beetles. Species richness was high in Pterostichinae (16 species), Carabinae (8 species), Harpalinae (5 species), Callistinae (3 species), Nebriinae (3 species) and others (1 species). Dominant species were Synuchus cycloderus (1,025 individuals) and Aulonocarabus seishinensis seishinensis (332 individuals), Pristosia vigil (133 individuals), and Coptolabrus smaragdinus branickii (117 individuals) in order. Monthly changes in abundance of upper dominante genera Pterostichus, Aulonocarabus, Coptolabrus species and Synuchus, Pristosia, Colpodes species showed that the former had the highest number in August whereas the latter increased in June and September. The genus Pterostichus species were preferred in deciduous forest in Wangpi-cheon watershed, while the genus Synuchus species were collected in mixes forest adjacent to farmland and recreation facilities and the genera Chlaenius, Harpalus species were collected in mixes forest adjacent to farmland nearby stream. Non-metric multidimensional scaling (NMDS), ground beetles and sites could be divided into two distinct groups: St. 1, St. 2, St. 3 group and St. 4 group. Some species such as Pterostichus orientalis orientalis, P. vicinus and P. bellatrix were particularly abundant at St. 4.

Optimization of Detention Facilities by Using Multi-Objective Genetic Algorithms (다목적 유전자 알고리즘을 이용한 우수유출 저류지 최적화 방안)

  • Chung, Jae-Hak;Han, Kun-Yeun;Kim, Keuk-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1211-1218
    • /
    • 2008
  • This study is for design of the detention system distributed in a watershed by the Multi-Objective Genetic Algorithms(MOGAs). A new model is developed to determine optimal size and location of detention. The developed model has two primary interfaced components such as a rainfall runoff model to simulate water surface elevation(or flowrate) and MOGAs to get the optimal solution. The objective functions used in this model depend on the peak flow and storage of detention. With various constraints such as structural limitations, capacities of storage and operational targets. The developed model is applied at Gwanyang basin within Anyang watershed. The simulation results show the maximum outlet reduction is occurred at detention facilities located in upper reach of watershed in the peak discharge rates. It is also reviewed the simultaneous construction of an off-line detention and an on-line detention. The methodologies obtained from this study will be used to control the flood discharges and to reduce flood damage in urbanized watershed.

Estimation of Runoff Curve Number for Chungju Dam Watershed Using SWAT (SWAT을 이용한 충주댐 유역의 유출곡선지수 산정 방안)

  • Kim, Nam-Won;Lee, Jin-Won;Lee, Jeong-Woo;Lee, Jeong-Eun
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.12
    • /
    • pp.1231-1244
    • /
    • 2008
  • The objective of this study is to present a methodology for estimating runoff curve number(CN) using SWAT model which is capable of reflecting watershed heterogeneity such as climate condition, land use, soil type. The proposed CN estimation method is based on the asymptotic CN method and particularly, it uses surface flow data simulated by SWAT. This method has advantages to estimate spatial CN values according to subbasin division and to reflect watershed characteristics because the calibration process has been made by matching the measured and simulated streamflows. Furthermore, the method is not sensitive to rainfall-runoff data since CN estimation is on a daily basis. The SWAT based CN estimation method is applied to Chungju dam watershed. The regression equation of the estimated CN that exponentially decays with the increase of rainfall is presented.

Evaluation of Field Application and Estimation of Bedload Discharge in the Forest Watershed using the Hydrophone (하이드로폰을 이용한 산림유역 소류사 유출량 산정 및 현장 적용성 검토)

  • Seo, Jun-Pyo;Kim, Ki-Dae;Woo, Choong-Shik;Lee, Chang-Woo;Lee, Heon-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.807-818
    • /
    • 2020
  • In this study, hydrophones using acoustic sensors were used to estimate the amount of bedload discharge in a forested watershed. The reaction characteristics were analyzed through hydrophone flume tests and field tests, and the quantitative bedload discharge was calculated and compared with that measured by a pit sampler. The hydrophone reaction changed the pulse according to the flow rate change, but did not react to standard sand. The pulse was different depending on the particle size and weight, and accordingly, there was a specific channel showing a suitable response. For a hydrophone installed in the field, by using an automatic impact device, the reaction characteristics of each channel were analyzed to confirm normal operation of the sensor and the suitability of the output value of each channel. In addition, a suitable channel was selected for the estimation of bedload discharge. The bedload discharge formula was developed using a hydrophone pulse and the average flow rate, and was compared with the measured data in the pit sampler in the study site. As a result of the study, if a hydrophone is used for monitoring the bedload in forested watersheds, it is considered effective in quantitatively estimating the weight of bedload discharge.

Estimation of Groundwater Recharge by Considering Runoff Process and Groundwater Level Variation in Watershed (유역 유출과정과 지하수위 변동을 고려한 분포형 지하수 함양량 산정방안)

  • Chung, Il-Moon;Kim, Nam-Won;Lee, Jeong-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.19-32
    • /
    • 2007
  • In Korea, there have been various methods of estimating groundwater recharge which generally can be subdivided into three types: baseflow separation method by means of groundwater recession curve, water budget analysis based on lumped conceptual model in watershed, and water table fluctuation method (WTF) by using the data from groundwater monitoring wells. However, groundwater recharge rate shows the spatial-temporal variability due to climatic condition, land use and hydrogeological heterogeneity, so these methods have various limits to deal with these characteristics. To overcome these limitations, we present a new method of estimating recharge based on water balance components from the SWAT-MODFLOW which is an integrated surface-ground water model. Groundwater levels in the interest area close to the stream have dynamics similar to stream flow, whereas levels further upslope respond to precipitation with a delay. As these behaviours are related to the physical process of recharge, it is needed to account for the time delay in aquifer recharge once the water exits the soil profile to represent these features. In SWAT, a single linear reservoir storage module with an exponential decay weighting function is used to compute the recharge from soil to aquifer on a given day. However, this module has some limitations expressing recharge variation when the delay time is too long and transient recharge trend does not match to the groundwater table time series, the multi-reservoir storage routing module which represents more realistic time delay through vadose zone is newly suggested in this study. In this module, the parameter related to the delay time should be optimized by checking the correlation between simulated recharge and observed groundwater levels. The final step of this procedure is to compare simulated groundwater table with observed one as well as to compare simulated watershed runoff with observed one. This method is applied to Mihocheon watershed in Korea for the purpose of testing the procedure of proper estimation of spatio-temporal groundwater recharge distribution. As the newly suggested method of estimating recharge has the advantages of effectiveness of watershed model as well as the accuracy of WTF method, the estimated daily recharge rate would be an advanced quantity reflecting the heterogeneity of hydrogeology, climatic condition, land use as well as physical behaviour of water in soil layers and aquifers.

Temporal and Spatial Characteristics of Sediment Yields from the Chungju Dam Upstream Watershed (충주댐 상류유역의 유사 발생에 대한 시공간적인 특성)

  • Kim, Chul-Gyum;Lee, Jeong-Eun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.11
    • /
    • pp.887-898
    • /
    • 2007
  • A physically based semi-distributed model, SWAT was applied to the Chungju Dam upstream watershed in order to investigate the spatial and temporal characteristics of watershed sediment yields. For this, general features of the SWAT and sediment simulation algorithm within the model were described briefly, and watershed sediment modeling system was constructed after calibration and validation of parameters related to the runoff and sediment. With this modeling system, temporal and spatial variation of soil loss and sediment yields according to watershed scales, land uses, and reaches was analyzed. Sediment yield rates with drainage areas resulted in $0.5{\sim}0.6ton/ha/yr$ excluding some upstream sub-watersheds and showed around 0.51 ton/ha/yr above the areas of $1,000km^2$. Annual average soil loss according to land use represented the higher values in upland areas, but relatively lower in paddy and forest areas which were similar to the previous results from other researchers. Among the upstream reaches, Pyeongchanggang and Jucheongang showed higher sediment yields which was thought to be caused by larger area and higher fraction of upland than other upstream sub-areas. Monthly sediment yields at the main outlet showed same trend with seasonal rainfall distribution, that is, approximately 62% of annual yield was generated during July to August and the amount was about 208 ton/yr. From the results, we could obtain the uniform value of sediment yield rate and could roughly evaluate the effect of soil loss with land uses, and also could analyze the temporal and spatial characteristics of sediment yields from each reach and monthly variation for the Chungju Dam upstream watershed.

Estimation of Pollutant Load Delivery Ratio for Flow Duration Using L-Q Equation from the Oenam-cheon watershed in Juam Lake (유량-부하량관계식을 이용한 주암호 외남천 유역의 유황별 유달율 산정)

  • Choi, Dong-Ho;Jung, Jae-Woon;Lee, Kyoung-Sook;Choi, Yu-Jin;Yoon, Kwang-Sik;Cho, So-Hyun;Park, Ha-Na;Lim, Byung-Jin;Chang, Nam-Ik
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2012
  • The objective of this study is to provide pollutant loads delivery ratio for flow duration in Oenam-cheon watershed, which is upstream watershed of Juam Lake. To calculate the delivery ratio by flow duration, rating curves and discharge-loads curves using measured data were established, then Flow Duration Curve(FDC) and pollutant loads delivery ratio curves were constructed. The results show that the delivery ratios for $BOD_5$ for abundant flow($Q_{95}$), ordinary flow($Q_{185}$), low flow($Q_{275}$), and drought flow($Q_{355}$) were 23.9, 12.7, 7.1, and 2.9%, respectively. The delivery ratios of same flow regime for T-N were 58.4, 31.2, 17.2 and 7.1%, respectively. While, the delivery ratios T-P were 17.3, 7.5, 3.4, and 1.1% respectively. In general, delivery ratio of high flow condition showed higher value due to the influence of nonpoint source pollution. Based on the study results, generalized equations were developed for delivery ratio and discharge per unit area, which could be used for ungaged watershed with similar pollution sources.