• Title/Summary/Keyword: Watershed Analysis

Search Result 1,469, Processing Time 0.028 seconds

Non-point Source Impact Analysis through Linkage of Watershed Model and River Water Quality Model (유역모형과 하천수질모형의 연계를 통한 비점오염원 영향분석)

  • Choi, Hyun Gu;Kim, Dong Il;Kim, Ji Eun;Han, Kun Yeun
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.1
    • /
    • pp.25-36
    • /
    • 2011
  • In this study, the accurate water quality analysis in rivers, including the non-point source is performed. First of all, watershed model, SWAT(Soil and Water Assessment Tool) was applied to analyze the impact of the non-point source in study area. And then, water quality analysis integrating the point source and the non-point source is implemented using QUALKO model. For more exact simulation, it should be the calibration and verification of variables and parameters which are needed for simulation. In addition, the importance of considering the non-point source was confirmed in river water quality simulation. BOD, TN, TP were analysed, and the results shows that BOD, TN and TP concentration was increased to 16.8%, 8.2% and 25.8% respectively. The more accurate estimate will be carried if use of reliable measurements and watershed simulation be done in models linking process. The suggested technique will improve the accuracy of the water quality analysis. The methodologies presented in this study will contribute to basin-wide water quantity and quality management.

Building an Integrated Governance Model and Finding Management Measures for Nonpoint Source Pollution in Watershed Management of Korea

  • Ban, Yong Un;Woo, Hye Mi;Han, Kyung Min;Baek, Jong In
    • Environmental Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.199-208
    • /
    • 2013
  • This study intended to develop an integrated governance model and find measures to manage nonpoint source (NPS) pollutions in watershed management. To reach this goal, this study has analyzed NPS pollution management policies in Korea and has employed statistical methods such as expert Delphi survey, analysis of variance, and factor analysis. As a result, this study has found that the favored basic organization form was a private-public cooperative council. The necessary governance-based NPS pollution management measures determined through this study are as follows: to build collaboration mechanisms including those related to motivation provision, trust building, capacity building, and making optimal regulations; to employ financial resources based on principles such as 'polluter-pays', 'recipient-pays', and 'general-tax-source'; and to develop several programs, including system improvement, pilot and management projects, and publicity.

A Study on the Methodology of Bioregional Approach for Coastal Area Management - Focus on the Case of Bioregional Classification in the Bay of Hampyong - (연안지역관리를 위한 생물지리지역 접근방법에 관한 연구 - 함평만의 생물지리지역 구분사례를 중심으로 -)

  • Kim, Kwi-Gon;Cho, Dong-Gil;Jung, Sung-Eun;Shin, Ji-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.3
    • /
    • pp.20-28
    • /
    • 2000
  • The objective of this study is to establish a methodology of bioregional approach for coastal area management as a basis for planning and design. Focusing on the bioregional approach, this study reviewed currently prevailing approaches such as watershed approach and ecological unit approach for planning and management purposes. This research placed its geographical focus on the landward watershed of the Bay of Hampyong located in Chonnam Province, dealing efficiently with shortcomings of existing researches which mainly covered seaward tidal flats without considering outside effects. The main methods of the study are classified into indoor computerized map analysis and field work. For computer analysis, printed maps and digital maps have been analysed, and GIS techniques have been utilized for its synthesis and finalizations. Field work included on-site landscape analysis and verification of a tentative place unit boundary. As a practical step, criteria for classifying bioregion were presented and the selected criteria included : topography & water ways ; roads & administrative boundaries ; habitat types ; and visual enclosure. First, based on the data of topography and water ways, broad classification work was performed and corrections were made based on data drawn out from other criteria. A tentative place unit map was drawn and revised through field visits. This study encompassed an initial but integral part for bioregional approach in landward watershed management of a coastal area. As results of the study, the necessity and efficiency of bioregional approach which considers environmental and cultural components systematically have been presented.

  • PDF

The Analysis of the Effect of Spatial Variability in Land Use and Pollutant Source on the Stream Water (유역에서 토지이용과 오염원자료의 공간적 변화가 하천수질에 미치는 영향 분석)

  • Jung, Kwang-Wook;Lee, Seung-Jae;Lee, Sang-Woo;Han, Jung-Yoon
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.40-49
    • /
    • 2007
  • For effective watershed management, we must understand the complex and dynamic relationships of land uses and water quality. Despite numerous studies investigated the relationships between water quality and land use, there are increasing concerns on the geographical variation and lack of spatial integrations in previous studies. We investigated the relationships between land use and water quality characteristics in the Hwa-Sung estuarine reservoir watershed in Korea, which has spatially integrated land uses. The spatial variations of these relationships were also examined using zonal analysis. Water quality parameter were correlated positively with residential and forest and negatively with paddy and upland especially during base flow in the near buffer zone. During storm flow, correlation between land use and water quality was less apparent. Population and livestock density was correlated well to water quality parameter than just number of population and livestock. Relationships across zones, distinguished by distances from streams, were inconsistent and erratic, suggesting that the relationships between remote land uses and water quality may be affected more significantly by sub-basin characteristics than by the land use itself. The watersheds studied are mainly non-urban and their land uses are similar to typical watershed of other estuarine reservoirs, therefore, the correlation developed in this study might be helpful to manage other watersheds of estuarine reservoir. This methodology could be applied to other areas where the watershed characteristics are not significantly different from the study area.

Database and User Interface for Pollutant Source and Load Management of Yeungsan Estuarine Lake Watershed Using GIS (GIS를 활용한 영산호 수계 오염원 데이터베이스 구축과 오염원관리 사용자 인터페이스)

  • 양홍모
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.6
    • /
    • pp.114-126
    • /
    • 2001
  • The purpose of this study is to establish the databases of pollutant sources and water quality measurement data by utilizing GIS, and making the user interface for the management of pollutant sources. Yeongsan Estuarine Lake was formed of a huge levee of 4.35 km constructed by an agricultural reclamation project. Water quality of the reservoir has been degraded gradually, which mainly attributes to increase of point and non-point source pollutant loads from the lake's watershed of 33,374.3 $\textrm{km}^2$ into it. Application of GIS to establishment of the database was researched of pint source such as domestic sewage, industrial wastewater, farm wastes, and fishery wastes, and non-pont source such as residence, rice and upland field, and forest runoffs of the watershed of the lake. NT Acr/Info and ArcView were mainly utilized for the database formation. Land use of the watershed using LANDSAT image data was analyzed for non-point source pollutant load estimation. Pollutant loads from the watershed into the reservoir were calculated using the GIS database and BOD, TN, TP load units of point and non-point sources. Total BOD, TN, TP loads into it reached approximately to 141, 715, 2,094 and 4,743 kg/day respectively. The loads can be used as input parameters for water quality predicting model of it. A user-friendly interface program was developed using Dialog Designer and Avenue Script of AcrView, which can perform spatial analysis of point and non-point sources, calculate pollutant inputs from the sources, update attribute data of them, delete and add point sources, identify locations and volumes of water treatment facilities, and examine water quality data of water sampling points.

  • PDF

Development of a Flow Duration Curve with Unit Watershed Flow Data for the Management of Total Maximum Daily Loads (수질오염총량관리 단위유역 유량측정자료를 이용한 유황곡선 작성)

  • Park, Jun Dae;Oh, Seung Young;Choi, Yun Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.224-231
    • /
    • 2012
  • It is necessary to develop flow duration curve (FDC) on each unit watershed in order to analyze flow conditions in the stream for the management of Total Maximum Daily Loads (TMDLs). This study investigated a simple method to develop FDC for the general use of the curve. A simple equation for daily flow estimation was derived from the regression analysis between the 8-day interval flow data of a unit watershed and the daily flow monitoring data of an adjacent upstream region. FDC can be prepared with the calculation of daily flow by the equation for each unit watershed. An annual and a full-period FDC were drawn for each unit watershed in Guem river basin. Standard flow such as low and ordinary flow can be obtained from the annual FDC. Major percentile of flow such as 10, 25, 50, 75 or 90% can be obtained from the full-period FDC. It is considered that this simple method of developing FDC can be utilized more widely for the calculation of standard flow and the assessment of water quality in the process of TMDLs.

Pollutant Load Characteristics by Baseflow in a Small Agricultural Watershed (농업소하천 유역의 기저유출에 의한 오염부하특성)

  • Shin, Yongchul;Lyou, Changwon;Choi, Ye Hwan;Lim, Kyuong Jae;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.2
    • /
    • pp.244-249
    • /
    • 2006
  • Natural environment of Weolgokri watershed has been well preserved as a traditional agricultural watershed. A year record of streamflow, $NO_3-N$, T-N and T-P concentrations data (April 2004 - Mar. 2005) were examined to estimate annual and seasonal patterns of pollutant loads in streamflow and baseflow from the agricultural watershed. To estimate pollutant loads from baseflow, baseflow component was separated from streamflow using the digital filter method in the Web-based Hydrograph Analysis Tool system and loads of $NO_3-N$, T-N and T-P from streamflow and baseflow were evaluated. The $NO_3-N$, T-N, and T-P loads from streamflow were 13.85 kg/ha, 45.92 kg/ha and 1.887 kg/ha, respectively, while corresponding loads from baseflow were 7.43 kg/ha, 24.70 kg/ha, 0.582 kg/ha, respectively. It was found that $NO_3-N$ and T-N loads were contributed slightly more by the baseflow (53% and 53% of Total-loads) than by the direct runoff (47% and 47% of Total loads). However, only 30% of total T-P load was contributed by the baseflow. It is recommended that one needs to assess pollutant load contribution by the baseflow to identify appropriate pollution control strategies for an effective watershed management.

Streamflow Estimation for Subbasins of Gap Stream Watershed by Using SWAT2000 Model (SWAT2000 모형을 이용한 갑천수계의 소유역별 유출량 추정)

  • Moon, Jong-Pil;Kim, Tai-Cheol
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.29-38
    • /
    • 2006
  • Geographic Information System has extended to higher assessment of water resources. GIS linking with hydrological model becomes a trend in water resource assessment modeling. One of the most popular models is SWAT2000 which have effectiveness in multi-purpose processes for predicting the impact of land management practices on water, sediments and chemicals yields in large complex watershed with varying soils, land uses, and management conditions over long period of time. In this study, SWAT2000 model was applied to Gap stream watershed in Daejeon city where TMDL (Total Maximum Daily Load) Regulation would be implanted. The Gap Stream watershed was partitioned into 8 subbasins, however, only 3 out of 8 subbaisns were observed for having practical gauged data on the basis of streamflow from the year of 2002 to 2005. Gauged streamflow data of Indong, Boksu and Hoeduck stations were used for calibration and validation of the SWAT Streamflow simulation. Estimation Efficiency Analysis (COE), Regression Analysis ($R^{2}$), Relative Error (R.E.) were used for comparing observed streamflow data of the 3 subbasins on the daily and monthly basis with estimated streamflow data in order to fix optimized parameters for the best fitted results. COE value for the daily and monthly streamflow was ranged from 0.45 to 0.96. $R^{2}$ values for daily and monthly streamflow ranged from 0.51 to 0.97. R.E. values for total streamflow volume ranged from 3 % to 22.5 %. The accuracy of the model results shows that the SWAT2000 model can be applicable to Korean watersheds like the Gap Stream watershed that needs to be partitioned into a number of subbasins for TMDL regulation.

The Extraction of Soil Erosion Model Factors Using GSIS Spatial Analysis (GSIS 공간분석을 활용한 토양침식모형의 입력인자 추출에 관한 연구)

  • 이환주;김환기
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.1
    • /
    • pp.27-37
    • /
    • 2001
  • Soil erosion by outflow of water or rainfall has caused many environmental problems as declining agricultural productivity, damaging pasture and preventing flow of water. As the interest in environment is increasing lately, soil erosion is considered as a serious problem, whereas the systematic regulation and analysis for that have not established yet. This research shows the method of extracting factor entered model which expects soil erosion by GSIS. There are several erosion model such as ANSWER, WEPP, RUSLE. The research used RUSLE erosion model which could expect general soil erosion connected easily with GSIS data. RUSLE's input factors are composed of rainfall runoff factor(R). soil erodibility factor(K), slope length factor(L), slope steepness factor(S), cover management factor(C) and support practice factor(P). The general equation used to extract L, S factor on the RUSLE to be oriented for agricultural area has some limitation to apply whole watershed. So, on this study we used a revised empirical equation applicable to the watershed by grid on the GSIS. Also, we analyzed RUSLE factors by watershed being analyzed with watershed extraction algorithm. Then we could calculate the minimum, maximum. mean and standard deviation of RUSLE factors by watershed.

  • PDF

Analysis of Land Use Pattern Change of Sub-Watershed -Focused on Moyar, India- (유역하류지역의 토지이용변화 분석 -인도 Moyar유역을 중심으로-)

  • Malini, Ponnusamy;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2010
  • Large pressure on the growing population has increased rapid change in the LULC (land use/land cover) patterns in the watershed area. Spatial distribution of LULC information and its changes are desirable for any effective planning, managing and monitoring activities. The aim of the study is to produce the 1,50,000 scaled LULC change map for the sub-watershed, Western Moyar, India using the multi-temporal satellite image dataset of IRS LISS III images for the year 1989, 1999, and 2002. About 9 classes are extracted using onscreen visual interpretation techniques for all the three years. The change detection analysis was performed using matrix method for period I (1989-1999) and period II (1999-2002). The study reveals that the changes noticed in period II (1999-2002) is comparatively more than period I (1989-1999), which is dynamic information to protect the sub-watershed area from the deterioration and paves the way to for the sustainable development.