• Title/Summary/Keyword: Water-Level Prediction Model

Search Result 206, Processing Time 0.03 seconds

Evaluation of Multi-classification Model Performance for Algal Bloom Prediction Using CatBoost (머신러닝 CatBoost 다중 분류 알고리즘을 이용한 조류 발생 예측 모형 성능 평가 연구)

  • Juneoh Kim;Jungsu Park
    • Journal of Korean Society on Water Environment
    • /
    • v.39 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • Monitoring and prediction of water quality are essential for effective river pollution prevention and water quality management. In this study, a multi-classification model was developed to predict chlorophyll-a (Chl-a) level in rivers. A model was developed using CatBoost, a novel ensemble machine learning algorithm. The model was developed using hourly field monitoring data collected from January 1 to December 31, 2015. For model development, chl-a was classified into class 1 (Chl-a≤10 ㎍/L), class 2 (10<Chl-a≤50 ㎍/L), and class 3 (Chl-a>50 ㎍/L), where the number of data used for the model training were 27,192, 11,031, and 511, respectively. The macro averages of precision, recall, and F1-score for the three classes were 0.58, 0.58, and 0.58, respectively, while the weighted averages were 0.89, 0.90, and 0.89, for precision, recall, and F1-score, respectively. The model showed relatively poor performance for class 3 where the number of observations was much smaller compared to the other two classes. The imbalance of data distribution among the three classes was resolved by using the synthetic minority over-sampling technique (SMOTE) algorithm, where the number of data used for model training was evenly distributed as 26,868 for each class. The model performance was improved with the macro averages of precision, rcall, and F1-score of the three classes as 0.58, 0.70, and 0.59, respectively, while the weighted averages were 0.88, 0.84, and 0.86 after SMOTE application.

Comparative study of meteorological data for river level prediction model (하천 수위 예측 모델을 위한 기상 데이터 비교 연구)

  • Cho, Minwoo;Yoon, Jinwook;Kim, Changsu;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.491-493
    • /
    • 2022
  • Flood damage due to torrential rains and typhoons is occurring in many parts of the world. In this paper, we propose a water level prediction model using water level, precipitation, and humidity data, which are key parameters for flood prediction, as input data. Based on the LSTM and GRU models, which have already proven time-series data prediction performance in many research fields, different input datasets were constructed using the ASOS(Automated Synoptic Observing System) data and AWS(Automatic Weather System) data provided by the Korea Meteorological Administration, and performance comparison experiments were conducted. As a result, the best results were obtained when using ASOS data. Through this paper, a performance comparison experiment was conducted according to the input data, and as a future study, it is thought that it can be used as an initial study to develop a system that can make an evacuation decision in advance in connection with the flood risk determination model.

  • PDF

Implementation of real-time water level prediction system using LSTM-GRU model (LSTM-GRU 모델을 활용한 실시간 수위 예측 시스템 구현)

  • Cho, Minwoo;Jeong, HanGyeol;Park, Bumjin;Im, Haran;Lim, Ine;Jung, Heokyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.216-218
    • /
    • 2022
  • Natural disasters caused by abnormal climates are continuously increasing, and the types of natural disasters that cause the most damage are flood damage caused by heavy rains and typhoons. Therefore, in order to reduce flood damage, this paper proposes a system that can predict the water level, a major parameter of flood, in real time using LSTM and GRU. The input data used for flood prediction are upstream and downstream water levels, temperature, humidity, and precipitation, and real-time prediction is performed through the pre-trained LSTM-GRU model. The input data uses data from the past 20 hours to predict the water level for the next 3 hours. Through the system proposed in this paper, if the risk determination function can be added and an evacuation order can be issued to the people exposed to the flood, it is thought that a lot of damage caused by the flood can be reduced.

  • PDF

Region-Scaled Soil Erosion Assessment using USLE and WEPP in Korea

  • Kim, Min-Kyeong;Jung, Kang-Ho;Yun, Sun-Gang;Kim, Chul-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.314-320
    • /
    • 2008
  • During the summer season, more than half of the annual precipitation in Korea occurs during the summer season due to the geographical location in the Asian monsoon belt. So, this causes severe soil erosion from croplands, which is directly linked to the deterioration of crop/land productivity and surface water quality. Therefore, much attention has been given to develop accurate estimation tools of soil erosion. The aim of this study is to assess the performance of using the empirical Universal Soil Loss Equation (USLE) and the physical-based model of the Water Erosion Prediction Project (WEPP) to quantify eroded amount of soil from agricultural fields. Input data files, including climate, soil, slope, and cropping management, were modified to fit into Korean conditions. Chuncheon (forest) and Jeonju (level-plain) were selected as two Korean cities with different topographic characteristics for model analysis. The results of this current study indicated that better soil erosion prediction can be achieved using the WEPP model since it has better power to illustrate a higher degree of spatial variability than USLE in topography, precipitation, soils, and crop management practices. These present findings are expected to contribute to the development of the environmental assessment program as well as the conservation of the agricultural environment in Korea.

Analyzing effect and importance of input predictors for urban streamflow prediction based on a Bayesian tree-based model

  • Nguyen, Duc Hai;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.134-134
    • /
    • 2022
  • Streamflow forecasting plays a crucial role in water resource control, especially in highly urbanized areas that are very vulnerable to flooding during heavy rainfall event. In addition to providing the accurate prediction, the evaluation of effects and importance of the input predictors can contribute to water manager. Recently, machine learning techniques have applied their advantages for modeling complex and nonlinear hydrological processes. However, the techniques have not considered properly the importance and uncertainty of the predictor variables. To address these concerns, we applied the GA-BART, that integrates a genetic algorithm (GA) with the Bayesian additive regression tree (BART) model for hourly streamflow forecasting and analyzing input predictors. The Jungrang urban basin was selected as a case study and a database was established based on 39 heavy rainfall events during 2003 and 2020 from the rain gauges and monitoring stations. For the goal of this study, we used a combination of inputs that included the areal rainfall of the subbasins at current time step and previous time steps and water level and streamflow of the stations at time step for multistep-ahead streamflow predictions. An analysis of multiple datasets including different input predictors was performed to define the optimal set for streamflow forecasting. In addition, the GA-BART model could reasonably determine the relative importance of the input variables. The assessment might help water resource managers improve the accuracy of forecasts and early flood warnings in the basin.

  • PDF

Spatio-temporal potential future drought prediction using machine learning for time series data forecast in Abomey-calavi (South of Benin)

  • Agossou, Amos;Kim, Do Yeon;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.268-268
    • /
    • 2021
  • Groundwater resource is mostly used in Abomey-calavi (southern region of Benin) as main source of water for domestic, industrial, and agricultural activities. Groundwater intake across the region is not perfectly controlled by a network due to the presence of many private boreholes and traditional wells used by the population. After some decades, this important resource is becoming more and more vulnerable and needs more attention. For a better groundwater management in the region of Abomey-calavi, the present study attempts to predict a future probable groundwater drought using Recurrent Neural Network (RNN) for future groundwater level prediction. The RNN model was created in python using jupyter library. Six years monthly groundwater level data was used for the model calibration, two years data for the model test and the model was finaly used to predict two years future groundwater level (years 2020 and 2021). GRI was calculated for 9 wells across the area from 2012 to 2021. The GRI value in dry season (by the end of March) showed groundwater drought for the first time during the study period in 2014 as severe and moderate; from 2015 to 2021 it shows only moderate drought. The rainy season in years 2020 and 2021 is relatively wet and near normal. GRI showed no drought in rainy season during the study period but an important diminution of groundwater level between 2012 and 2021. The Pearson's correlation coefficient calculated between GRI and rainfall from 2005 to 2020 (using only three wells with times series long period data) proved that the groundwater drought mostly observed in dry season is not mainly caused by rainfall scarcity (correlation values between -0.113 and -0.083), but this could be the consequence of an overexploitation of the resource which caused the important spatial and temporal diminution observed from 2012 to 2021.

  • PDF

A Study on the prediction of BMI(Benthic Macroinvertebrate Index) using Machine Learning Based CFS(Correlation-based Feature Selection) and Random Forest Model (머신러닝 기반 CFS(Correlation-based Feature Selection)기법과 Random Forest모델을 활용한 BMI(Benthic Macroinvertebrate Index) 예측에 관한 연구)

  • Go, Woo-Seok;Yoon, Chun Gyeong;Rhee, Han-Pil;Hwang, Soon-Jin;Lee, Sang-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.5
    • /
    • pp.425-431
    • /
    • 2019
  • Recently, people have been attracting attention to the good quality of water resources as well as water welfare. to improve the quality of life. This study is a papers on the prediction of benthic macroinvertebrate index (BMI), which is a aquatic ecological health, using the machine learning based CFS (Correlation-based Feature Selection) method and the random forest model to compare the measured and predicted values of the BMI. The data collected from the Han River's branch for 10 years are extracted and utilized in 1312 data. Through the utilized data, Pearson correlation analysis showed a lack of correlation between single factor and BMI. The CFS method for multiple regression analysis was introduced. This study calculated 10 factors(water temperature, DO, electrical conductivity, turbidity, BOD, $NH_3-N$, T-N, $PO_4-P$, T-P, Average flow rate) that are considered to be related to the BMI. The random forest model was used based on the ten factors. In order to prove the validity of the model, $R^2$, %Difference, NSE (Nash-Sutcliffe Efficiency) and RMSE (Root Mean Square Error) were used. Each factor was 0.9438, -0.997, and 0,992, and accuracy rate was 71.6% level. As a result, These results can suggest the future direction of water resource management and Pre-review function for water ecological prediction.

the On-Line Prediction of Water Levels using Kalman Filters (칼만 필터를 이용한 실시간 조위 예측)

  • 이재형;황만하
    • Water for future
    • /
    • v.24 no.3
    • /
    • pp.83-94
    • /
    • 1991
  • In this paper a discrete extended Kalman filter for the tidal prediction has been developed. The filter is based on a set of difference equations derived from the one dimensional shallow water equations using the finite difference scheme proposed by Lax-Wendroff. The filter gives estimates of the water level and water velocity, together with the parameters in the model which essentially have a random character, e.g. bottom friction and wind stress. The estimates are propagated and updated by the filter when the physical circumstances change. The Kalman-filter is applied to field data gathered in the coastal area alon the West Sea and it is shown that the filter gives satisfactory results in forecasting the waterlevels during storm surge periods.

  • PDF

Numerical analysis of a tidal flow using quadtree grid (사면구조 격자를 이용한 조석흐름 수치모의)

  • Kim, Jong-Ho;Kim, Hyung-Jun;NamGung, Don;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.163-167
    • /
    • 2007
  • For numerical analysis of a tidal flow, a two-dimensional hydrodynamic model is developed by solving the nonlinear shallow-water equations. The governing equations are discretized explicitly with a finite difference leap-frog scheme and a first-order upwind scheme on adaptive hierarchical quadtree grids. The developed model is verified by applying to prediction of tidal behaviors. The calculated tidal levels are compared to available field measurements. A very reasonable agreement is observed.

  • PDF

Moisture Sorption Characteristics and a Prediction Model of Anchovy Powder with Particle Size (입자크기에 따른 분말멸치의 흡습특성 및 예측모델)

  • Youn, Kwang-Sup
    • Food Science and Preservation
    • /
    • v.17 no.4
    • /
    • pp.513-518
    • /
    • 2010
  • This study was carried out to estimate the moisture sorption characteristics and prediction model of anchovy powders with different particle size as above 80 mesh, 80-60 mesh and 40-60 mesh. The equilibrium moisture content had higher values at lower storage temperatures, and higher water activity. The monolayer moisture content calculated using the GAB equation showed a higher level of significance than that of BET equation. The estimated monolayer moisture content was 0.024-0.052 g $H_2O/g$ dry solid. The absorption enthalpy was calculated with different particle size and various water activities. It showed that the absorption energy was decreased with increasing water activity but no difference was found on particle size increasement. The fitness of the isotherm curve was shown to be in the order of Khun, Halsey, Caurie and Oswin model. The prediction model equations for the moisture content were established by ln(time), water activity, and temperature, respectively. The model equation will be helpful for future work on drying and storage of anchovy powder.