• Title/Summary/Keyword: Water-Binder Ratio

Search Result 492, Processing Time 0.025 seconds

Microstructure Properties of High Strength Concrete Utilizing EVA with Micro Particles (EVA 마이크로 입자를 활용한 고강도 콘크리트의 미세구조특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.97-101
    • /
    • 2005
  • High strength concretes utilizing EVA with micro particles were prepared by varying polymer/binder mass ratio and curing conditions with a constant water/binder mass ratio of 0.3. The EVA modified concretes on the compressive and flexural strength, microstructure, ultrapulse modulus in curing condition(dry and water curing) were studied. Also, scanning electron microscope analysis(SEM) was performed to reveal the presence of polymer film and cement hydrates in the concrete. The compressive strength of the EVA modified concretes cured at water conditions ere higher than that of the EVA modified concretes cured at dry conditions. But, the flexural strength of the specimens cured at dry conditions were higher than that of the specimens cured at water conditions. Due to the interaction of the cement hydrates and polymer film, an interpenetrating network originated in which the aggregates were embedded. The curing of the polymer modified concrete involves two step of cement hydrates and polymer modification, and cement hydrates was promoted in water conditions and polymer film formation take place when water evaporates and was thereby was favored in dry conditions. By SEM analysis, influences of polymer modification was strengthening of the transition zone between the aggregate and the paste, and the porosity of transition zone decreases. By spring analysis, it could known that polymer film affects in porosity decrease and strengthening of transition zone.

  • PDF

Modelling the performance of self-compacting SIFCON of cement slurries using genetic programming technique

  • Cevik, Abdulkadir;Sonebi, Mohammed
    • Computers and Concrete
    • /
    • v.5 no.5
    • /
    • pp.475-490
    • /
    • 2008
  • The paper explores the potential of applicability of Genetic programming approach (GP), adopted in this investigation, to model the combined effects of five independent variables to predict the mini-slump, the plate cohesion meter, the induced bleeding test, the J-fiber penetration value, and the compressive strength at 7 and 28 days of self-compacting slurry infiltrated fiber concrete (SIFCON). The variables investigated were the proportions of limestone powder (LSP) and sand, the dosage rates of superplasticiser (SP) and viscosity modifying agent (VMA), and water-to-binder ratio (W/B). Twenty eight mixtures were made with 10-50% LSP as replacement of cement, 0.02-0.06% VMA by mass of cement, 0.6-1.2% SP and 50-150% sand (% mass of binder) and 0.42-0.48 W/B. The proposed genetic models of the self-compacting SIFCON offer useful modelling approach regarding the mix optimisation in predicting the fluidity, the cohesion, the bleeding, the penetration, and the compressive strength.

Performance Analysis of Low-viscosity type Superplasticizer (저점도형 감수제의 성능 분석)

  • Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.35-36
    • /
    • 2016
  • Recently, with the increasing demand of high performance of concrete, the mix design of concrete mixture has became low water-to-binder ratio with high binder content. To compensate these trend of mix design, high range water reducer, or superplascizier has been invented to achieve high flowable concrete. Although this superplasticizer provides favorable workability based on its dispersing action on the components of concrete mixture, it has an limitation of decreasing viscosity of the mixture, and thus it is difficult to secure sufficient workability for high performance concrete mixtures with high binder content. To improve the workability of concrete with high viscosity, recently, low-viscosity type superplasticizer was introduced, and in this research, a fundamental properties of low-viscosity type superplasticizer is evaluated.

  • PDF

A Study on the Choice of Optimal Mixtures and Sensibility Properties of High Strength Concrete and Mass Concrete to apply the High Rising Building (초고층구조물에 적용하기 위한 고강도콘크리트 및 매스콘크리트의 최적배합선정 및 민감도특성에 관한 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Kim, Eul-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.2 s.16
    • /
    • pp.153-159
    • /
    • 2005
  • This study is to choose the optimal mixture and to analyze the sensibility properties of High strength concrete and mass concrete to apply the high rising building. The main experimental variables were water/binder ratio $39\%,\;33\%,\;35\%\;and\;37\%$, replacement ratio of fly ash $5\%,\;10\%\;and\;15\%$, in the high strength concrete and water/binder ratio $39\%,\;41\%\;and\;43\%$, replacement ratio of fly ash $10\%,\;20\%\;and\;30\%$, in the man concrete. According to the test results, the principal conclusions are summarized as follows. 1) The slump(or slump flow) and air content of fresh concrete were found to be the highest in the elapsed time 30 minutes. 2) The optimal mixture conditions are W/B $40\%$, FA $25\%$ in the mass concrete and W/B $33.4\%$, FA $15\%$ in the high strength concrete. 3) The ranges of sensibility are satisfied in the moisture content ${\pm}l\%\;and\;S/a\;{\pm}2\%$.

A Fundamental Study on Very High Strength and High Flowable Concrete using Industrial By-products (산업부산물을 활용한 고유동화 초고강도 콘크리트의 기초물성 및 동결융해특성)

  • 김병권;이석홍;정하선;이영남;문한영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.707-714
    • /
    • 2001
  • This paper presents the fundamental study on rational manu(acture of Very High Strength(VHS) concrete using industrial by-products as like silica fume, slag and fly ash. In this study, we had tested various mixing cases to manufacture the VHS concrete(target compressive strength : over 1,000 kgf/$cm^{2}$) which is easily workable (target slump flow : 60$\pm$l0cm), The main variables studied are; 1) test variables to find the optimum replacement ratio of mineral admixture, 2) test variables to find a rational water-binder ratio, a proper binder content, 3) test variables to find the method for reduction of slump loss, 4) test variables to know the influence of air entrainment on frost resistance. From the test results, it is concluded that the rational mix design can be made by using 40% slag, 10% silica fume, and water reducing agent(slump loss reduction type). We found that it is unnecessary to entrain air for freeze-thawing resistance.

  • PDF

Clustering-based identification for the prediction of splitting tensile strength of concrete

  • Tutmez, Bulent
    • Computers and Concrete
    • /
    • v.6 no.2
    • /
    • pp.155-165
    • /
    • 2009
  • Splitting tensile strength (STS) of high-performance concrete (HPC) is one of the important mechanical properties for structural design. This property is related to compressive strength (CS), water/binder (W/B) ratio and concrete age. This paper presents a clustering-based fuzzy model for the prediction of STS based on the CS and (W/B) at a fixed age (28 days). The data driven fuzzy model consists of three main steps: fuzzy clustering, inference system, and prediction. The system can be analyzed directly by the model from measured data. The performance evaluations showed that the fuzzy model is more accurate than the other prediction models concerned.

Experimental Study of Strength Development in High Flow Concrete as following of Curing Temperature (초기 재령에서의 양생 온도 조건에 따른 고유동 콘크리트의 조기강도 발현 성상에 관한 실험적 연구)

  • 이도범;김효락;박지훈;최일호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.19-22
    • /
    • 2003
  • This study is carried out (1) checking the development of compressive strength of high flowing concrete at early age, changing water-binder ratio, curing temperature, and type of aggregate, and (2) suggesting basic date that helping cost and schedule plan in future construction. As the result of this study, we find that high curing temperature is effective for the development of compressive strength of concrete at early age on the condition of each water-binder ratio, and after making the compressive prediction formula related to the curing temperature by maturity, the result of the formular is similar to the temperature-compressive strength-age measured data

  • PDF

A Study of Shrinkage Depend on Depth of Artificial Lightweight Aggregate Concrete (인공경량 콘크리트의 깊이에 따른 수축에 관한 연구)

  • Lee, Chang-Soo;Lin, Yan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.271-272
    • /
    • 2010
  • This thesis is researched to compare the shrinkage of lightweight concrete depending on depth to normal concrete. It is used artificial lightweight aggregate which has 20% of pre-absorb value by lightweight concrete. When water-binder ratio is 30%, average shrinkage of lightweight concrete section decreased than normal concrete, but differential shrinkage of lightweight concrete section increased. However water-binder ratio is 40%, average shrinkage and differential shrinkage of lightweight concrete section decreased than normal concrete.

  • PDF

Viscosity analysis of lightweight foamed mortar for foam stability (기포 안정성 확보를 위한 경향 기포 모르타르의 점도 분석)

  • Lee, Hyangsun;Son, Baegeun;Jeon, Jongwoon;Han, Dongyeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.52-53
    • /
    • 2018
  • In this study, viscosity analysis of the lightweight foamed mortar was conducted to evaluate the foam stability. According to a series of experiment, void volume related with density of the mixture and viscosity of the mixture were infleunced by water-to-binder ratio and addition of viscosity modifying admixture (VMA). Especially, the stability of the foam inside the mortar was confirmed with adding VMA.

  • PDF

Analysis of the Mixing Conditions by Domestic Ready-Mixed Concrete Rage Sphere (국내 레미콘의 권역별 배합특성에 관한 분석 - 경기 및 경상권역을 중심으로 -)

  • Seo, Hwi-Wan;Kim, Young-Il;Kang, Ghang-Un;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.131-132
    • /
    • 2011
  • This study analyzes the yearly-best delivered size range of truck mixer based on the specified mix, Water to Binder Ratio, aggregate proportion and unit amount with statistical method targeting on Kyeongi and Kyeongsang province and compares with the similar materials of Japan to propose as a basic standard for the quality control of mixer truck. As a result, in case of the Water to Binder Ratio of these areas, it is higher than Japan's due to the excessive safety rate reflecting the changes of differential value impact and unit amount, and the unit amount's standard deviation is very large by reflecting the changes of the amount used and chemical admixture susceptibility. In case of aggregate proportion, the frequency rate is about 50%, which is very similar value with Japan's one.

  • PDF