• 제목/요약/키워드: Water scaling

검색결과 275건 처리시간 0.023초

CEOP Annual Enhanced Observing Period Starts

  • Koike, Toshio
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.343-346
    • /
    • 2002
  • Toward more accurate determination of the water cycle in association with climate variability and change as well as baseline data on the impacts of this variability on water resources, the Coordinated Enhanced Observing Period (CEOP) was launched on July 1,2001. The preliminary data period, EOP-1, was implemented from July to September in 2001. The first annual enhanced observing period, EOP-3, is going to start on October 1,2002. CEOP is seeking to achieve a database of common measurements from both in situ and satellite remote sensing, model output, and four-dimensional data analyses (4DDA; including global and regional reanalyses) for a specified period. In this context a number of carefully selected reference stations are linked closely with the existing network of observing sites involved in the GEWEX Continental Scale Experiments, which are distributed across the world. The initial step of CEOP is to develop a pilot global hydro-climatological dataset with global consistency under the climate variability that can be used to help validate satellite hydrology products and evaluate, develop and eventually predict water and energy cycle processes in global and regional models. Based on the dataset, we will address the studies on the inter-comparison and inter-connectivity of the monsoon systems and regional water and energy budget, and a path to down-scaling from the global climate to local water resources, as the second step.

  • PDF

Comparison of Four Different Ordination Methods for Patterning Water Quality of Agricultural Reservoirs

  • Bae, Mi-Jung;Kwon, Yong-Su;Hwang, Soon-Jin;Park, Young-Seuk
    • 생태와환경
    • /
    • 제41권spc호
    • /
    • pp.1-10
    • /
    • 2008
  • We patterned water quality of agricultural reservoirs according to the differences of six physico-chemical environmental factors (TN, TP, DO, BOD, COD, and SS) using four different ordination methods: Principal Components Analysis (PCA), Detrended Correspondence Analysis (DCA), Nonmetric Multidimensional Scaling (NMS), and Isometric Feature Mapping (Isomap). The data set was obtained from the water quality monitoring networks operated by the Ministry of Agriculture and Forestry and the Ministry of Environments. Chlorophyll-${\alpha}$ displayed the highest correlation with COD, followed by TP, BOD, SS, and TN (p<0.01), while negatively correlated with altitude and bank height of the reservoirs (p<0.01). Although four different ordination methods similarly patterned the reservoirs according to the gradient of nutrient concentration, PCA and NMS appeared to be the most efficient methods to pattern water quality of reservoirs based on the explanation power. Considering variable scores in the ordination map, the concentration of nutrients was positively correlated with Chl-${\alpha}$, while negatively correlated with altitude and bank height. These ordination methods may help to pattern agricultural reservoirs according to their water quality characteristics.

Multi-Dimension Scaling as an exploratory tool in the analysis of an immersed membrane bioreactor

  • Bick, A.;Yang, F.;Shandalov, S.;Raveh, A.;Oron, G.
    • Membrane and Water Treatment
    • /
    • 제2권2호
    • /
    • pp.105-119
    • /
    • 2011
  • This study presents the tests of an Immersed Membrane BioReactor (IMBR) equipped with a draft tube and focuses on the influence of hydrodynamic conditions on membrane fouling in a pilot-scale using a hollow fiber membrane module of ZW-10 under ambient conditions. In this system, the cross-flow velocities across the membrane surface were induced by a cylindrical draft-tube. The relationship between cross-flow velocity and aeration strength and the influence of the cross-flow on fouling rate (under various hydrodynamic conditions) were investigated using Multi-Dimension Scaling (MDS) analysis. MDS technique is especially suitable for samples with many variables and has relatively few observations, as the data about Membrane Bio-Reactor (MBR) often is. Observations and variables are analyzed simultaneously. According to the results, a specialized form of MDS, CoPlot enables presentation of the results in a two dimensional space and when plotting variables ratio (output/input) rather than original data the efficient units can be visualized clearly. The results indicate that: (i) aeration plays an important role in IMBR performance; (ii) implementing the MDS approach with reference to the variables ratio is consequently useful to characterize performance changes for data classification.

Thrust Characteristics and Nozzle Role of Water Jet Propulsion

  • Ni, Yongyan;Liu, Weimin;Shen, Zhanhao;Pan, Xiwei
    • International Journal of Fluid Machinery and Systems
    • /
    • 제10권1호
    • /
    • pp.47-53
    • /
    • 2017
  • Surface pressure integration and momentum method were respectively performed to evaluate the impeller thrust and the system thrust of a contra-rotating axial flow water jet propulsion, and an interesting phenomenon so-called thrust paradox was revealed. To explain the paradox, the impeller thrust and the system thrust were physically and theoretically analyzed, the results show that the impeller thrust is head involved and is determined by the hydraulic parameters upstream and downstream the impeller, while the momentum method depicted by a classic equation is valid simply under the best efficiency point. Consequently, the role of a water jet propulsion nozzle was deduced that the nozzle is mainly to limit the flow rate that crosses the impeller and to assure the system working under the best efficiency condition apart from its ability to produce momentum difference. Related mathematical formula expressed the nozzle diameter is the dominant variable used to calculate the working condition of the water jet propulsion. Therefore the nozzle diameter can be steadily estimated by the former expression. The system thrust scaling characteristics under various speeds were displayed lastly.

비중의 변화와 발수제 첨가가 경량기포콘크리트의 물성에 미치는 영향 (Effect of the Variation of Speccfic Gravity and the Addition of Water Repellent Agent on the Physical Properties of Autoclaved Lightweight Concrete)

  • 노재성;황의환;홍성수;이범재
    • 콘크리트학회지
    • /
    • 제9권2호
    • /
    • pp.137-144
    • /
    • 1997
  • 발수제의 유무와 알루미늄분말의 분말도 및 첨가량을 조절하여 비중을 0.4에서 0.7로 변화시켜 비중과 ALC의 기초물성, 내동해성 및 내구성과의 관계를 조사하였다. 압축 및 인장강도는 비중이 0.4에서 0.7로 증가함에 따라 발수제의 첨가량에 관계없이 증가하였고 발수제의 첨가량이 증가하면 내동해성은 개선되었으며 흡수율은 감소하였다. 입경이 작은 AI분말을 이용항 제조한 ALC의 박리에 의한 체적감소율은 낮게 나타났으며 일면동결지속시험 및 기중동결수중융해시험에서도 내동해성이 우수한 것으로 나타났다.

Advancement of Clay and Clay-based Materials in the Remediation of Aquatic Environments Contaminated with Heavy Metal Toxic Ions and Micro-pollutants

  • Lalhmunsiama, Lalhmunsiama;Malsawmdawngzela, Ralte;Vanlalhmingmawia, Chhakchhuak;Tiwari, Diwakar;Yoon, Yiyong
    • 공업화학
    • /
    • 제33권5호
    • /
    • pp.502-522
    • /
    • 2022
  • Clay minerals are natural materials that show widespread applications in various branches of science, including environmental sciences, in particular the remediation of water contaminated with various water pollutants. Modified clays and minerals have attracted the attention of researchers in the recent past since the modified materials are seemingly more useful and efficient for removing emerging water contaminants. Therefore, modified engineered materials having multi-functionalities have received greater interest from researchers. The advanced clay-based materials are highly effective in the remediation of water contaminated with organic and inorganic contaminants, and these materials show enhanced selectivity towards the specific pollutants. The review inherently discusses various methods employed in the modification of clays and addresses the challenges in synthesizing the advanced engineered materials precursor to natural clay minerals. The changes in physical and chemical properties, as investigated by various characterization techniques before and after the modifications, are broadly explained. Further, the implications of these materials for the decontamination of waterbodies as contaminated with potential water pollutants are extensively discussed. Additionally, the insights involved in the removal of organic and inorganic pollutants are discussed in the review. Furthermore, the future perspectives and specific challenges in the scaling up of the treatment methods in technology development are included in this communication.

Choline chloride-Glycerol (1:2 mol) as draw solution in forward osmosis for dewatering purpose

  • Dutta, Supritam;Dave, Pragnesh;Nath, Kaushik
    • Membrane and Water Treatment
    • /
    • 제13권2호
    • /
    • pp.63-72
    • /
    • 2022
  • Choline chloride-glycerol (1:2 mol), a natural deep eutectic solvent (NADES) is examined as a draw solution in forward osmosis (FO) for dewatering application. The NADES is easy to prepare, low in toxicity and environmentally benign. A polyamide thin film composite membrane was used. Characterization of the membrane confirmed porous membrane structure with good hydrophilicity and a low structural parameter (722 ㎛) suitable for FO application. A dilute solution of 20% (v/v) NADES was enough to generate moderate water flux (14.98 L m-2h-1) with relatively low reverse solute flux (0.125 g m-2h-1) with deionized water feed. Application in dewatering industrial wastewater feed showed reasonably good water flux (11.9 L m-2h-1) which could be maintained by controlling the external concentration polarization and fouling/scaling mitigation via simple periodic deionized water wash. In another application, clarified sugarcane juice could be successfully concentrated. Recovery of the draw solute was accomplished easily by chilling utilizing thermo responsive phase transition property of NADES. This study established that low concentration NADES can be a viable alternative as a draw solute for dewatering of wastewater and other heat sensitive applications along with a simple recovery process.

축전식 탈염공정을 이용한 하수중의 용존염 제거특성 연구 (The removal characteristics of dissolved solid in wastewater during a capacitive deionization process)

  • 신경숙;이태우;차재환;임윤대;박승국;강경석;송의열
    • 상하수도학회지
    • /
    • 제28권2호
    • /
    • pp.151-160
    • /
    • 2014
  • Capacitive deionization(CDI) has many advantages over other desalination technologies due to its low energy consumption, less environmental pollution and relative low fouling potential. The objectives of this study are evaluate the performance of CDI which can be used for dissolved salts removal from sewage. To identify ion selectivity of nitrate and phosphate in multiionic solutions and adsorption/desorption performance related to applied potential, a series of laboratory scale experiments were conducted using a CDI unit cell with activated carbon electrodes. The CDI process was able to achieve more than 75 % TDS and $NO_3{^-}$, $NH_4{^+}$ removals, while phosphate removal was 60.8 % and is inversely related in initial TDS and $HCO_3{^-}$ concentration. In continuous operation, increasing the inner cell pressure and reduction of TDS removal ability were investigated which are caused by inorganic scaling and biofouling. However a relative mild cleaning solution(5 % of citric acid for calcium scaling and 500 mg/L of NaOCl for organic fouling) restored the electrochemical adsorption capacity of the CDI unit to its initial level.

DEM을 이용한 수로망의 형태학적 표현 (Morphological Representation of Channel Network by Dint of DEM)

  • 김주철;김재한
    • 한국수자원학회논문집
    • /
    • 제40권4호
    • /
    • pp.287-297
    • /
    • 2007
  • DEM을 이용하여 국부경사와 기여면적 사이의 규모에 따른 거동특성을 조사하여 면적한계기준과 경사-면적한계 기준이 상호보완적인 형태의 수로망 추적절차를 제시하였다. 상기방법과 현장자료에 대한 적용을 통하여 유역의 경사는 공간적으로 대규모의 산포경향을 갖는 지형인자임을 확인할 수 있었다. 양자의 규모에 따른 거동특성권역에 따라 지면의 형상은 발산지형과 수렴지형으로 분류될 수 있었다. 본 연구에서 제시한 수로망 동정 절차를 설마천 시험 유역에 대하여 수행한 결과 유역의 동적 거동을 확인할 수 있었다. 또한 이로부터 지형도를 이용한 수작업에 기초한 방법에 비하여 하천두부의 거동과 수로망의 동적특성을 잘 표현하고 있음을 볼 수 있었다.

동계 광양만에서 식물플랑크톤 군집구조의 수평적 분포특성과 성장에 미치는 영양염 제한 특성 (Characteristics of Horizontal Community Distribution and Nutrient Limitation on Growth Rate of Phytoplankton during a Winter in Gwangyang Bay, Korea)

  • 백승호;김동선;현봉길;최현우;김영옥
    • Ocean and Polar Research
    • /
    • 제33권2호
    • /
    • pp.99-111
    • /
    • 2011
  • To estimate the effects of limitation nutrients for phytoplankton growth and its influences on short-term variations of a winter phytoplankton community structure, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas from 6 to 7 February in Gwangyang Bay, Korea. Also, several algal bio-assay studies were conducted to identify any additional nutrient effects on phytoplankton assemblage using surface water for the assay. The dominant species in the bay was diatom Skeletonema costatum, which occupied more than 70% of total species in most stations (St.1-16) of the inner bay. According to a cluster and multidimensional scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western parts of Myodo lsland, which can be characterized as a semien-closed eutrophic area with high phytoplankton abundance. The second group included most stations from the north-eastern part of Myodo lsland, influenced indirectly by surface water currents from offshore of the bay. The standing phytoplankton crops were lower than those of the first group. The other cluster was restricted to samples collected from offshore of the bay. In the bay, silicon (Si) and phosphorus (P) were not a major limiting factor for phytoplankton production. However, since the DIN: DIP and DSi: DIN ratios clearly demonstrated that there were potential stoichiometric N limitations, nitrogen (N) was considered as a limiting factor. Based on the algal bio-assay, in vivo fluorescence values in N (+) added experiments were higher compared to control and P added experiments. Our results suggested that nitrogen may act as one of the most important factors in controlling primary production during winter in Gwangyang Bay.