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1. Introduction1)

Rapid industrialization and urbanization resulted in the deleterious 
quality of fresh water. The occurrence of toxic heavy metals and 
emerging micro-pollutants in water resources is increased tremendously 
with the advent of enhanced industrial and anthropogenic activities, in-
cluding the mining industry, electroplating industry, pesticides, metal 
rinse processes, tanning industry, textile industry, batteries, metal 
smelting, paper industry, electrolysis applications etc.[1,2]. Many heavy 
metals, including mercury, lead, copper, cadmium, arsenic, chromium, 
and many other (toxic) metals, are excessively released, which causes 
serious environmental and public health issues[3,4]. The primary sour-
ces, permissible levels in drinking water, and health effects of heavy 
metals are given in Table 1. The heavy metals are persistent and 
non-biodegradable; hence, even at low concentrations posing serious 
environmental concerns. The presence of these contaminants in water-
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bodies resulted in a slow accumulation in the biological systems, both 
in marine and human lives. Hence, eliminating these heavy metals is 
a viable and effective solution to safeguard the human and aquatic en-
vironment[5]. 

Similarly, excess release of harmful endocrine-disrupting chemicals 
(EDCs), pharmaceuticals, dyes, personal care products etc. are entering 
the aquatic environment through various anthropogenic activities[6,7]. 
Micro-pollutants are usually detected at trace quantities ranging from 
µg/L to ng/L in waterbodies, including river and lake waters. Since the 
traditional wastewater treatment plants are not specifically designed to 
eliminate these emerging pollutants at low levels. Moreover, their po-
tential persistency and bioactivity caused an additional pollutant load 
to the water bodies, which needs efficient removal of these emerging 
contaminants from the aquatic environment. Different types of micro-
pollutants and their effects on human health are summarized in Table 
2. Due to extensive and continuous usage of these pollutants with un-
managed disposal in the water bodies, they are detected in the aquatic 
environment. Therefore, these micro-pollutants pose several health is-
sues in humans and living organisms and received a global concern 
[8,9].

Removing of toxic heavy metals and micro-pollutants from water 
bodies is of great environmental concern. A literature survey reveals 
that several methods, including chemical precipitation, evaporation, re-
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verse osmosis, solvent extraction, ion exchange, biological, photo-
catalysis, electrochemical treatment, membrane filtration, etc. are em-
ployed for the decontamination of water polluted with toxic metal ions, 
including micro-pollutants[35,36]. Nevertheless, these methods have 
several disadvantages, for example, expensive, the requirement of skil-
led personnel for operation, incomplete removal, generation of by-prod-
ucts, and high energy requirement[37,38]. Moreover, these processes 
are not efficient for low-level metal pre-concentration. Adsorption is 
one of the most common methods used to remove of these pollutants 
from the aquatic environment due to its low cost, simplicity of oper-
ation, effectiveness, and high efficiency compared to other traditional 
removal methods[39-43]. Moreover, adsorbents could be reutilized by 
following an appropriate desorption procedure[44,45].  

Clays are the most common adsorbents used in adsorption methods 
due to their abundance, low cost, eco-friendly, high specific surface 
area, etc.[46]. Researchers around the globe are focusing on the use of 

natural and modified clays as adsorbents for treating wastewater since 
it contains exchangeable cations along with the surface functional 
groups, which facilitate the sorption of various water contaminants[47]. 
Clay minerals consist of alumino silicate sheets, of which the structural 
layers are firmly arranged, and each sheet is made up of two, three, 
or four layers. This constitutes tetrahedral silicate [SiO4]4-(T) and octa-
hedral aluminate [AlO3(OH)3]6-(O). The smaller metal cations occupy 
the interiors of tetrahedrons and octahedrons, and the oxygen atom oc-
cupies the apices from which some are connected with protons (as 
OH). Thus, fundamental structural elements form the hexagonal net-
work with each sheet. The charges of the layers depend upon the ratio 
and number of sheets in the fundamental structural units[48,49]. 

Clay minerals are efficient in removing several heavy metal toxic 

ions effectively, however; the organic pollutants having non- or low-
polarity and anionic impurities such as As(V), As(III), Cr(VI) etc., are 

Heavy metals Sources Health effects Permissible level in 
drinking water Ref.

Mercury
Effluents from mining, power generation, 

chloralkali wastewater, rubber processing and 
batteries industry.

Blockage of the enzyme sites and 
inhibition of protein synthesis. 2 µg/L [10-12]

Lead

Battery industries, metal plating, lead-acid 
batteries industries, paint, oil, metal, phosphate 

fertilizer industries, electronic, and wood 
processing.

General metabolic poisoning, inhibiting 
enzyme active sites and affecting 

the blood, liver, kidney and brains of 
human beings; stroke and even death.

0.01 mg/L [13-15]

Copper
Copper mining and smelting, brass industry, 

electroplating industries and extreme usage of 
Cu-based agro-chemicals.

Diarrhea, abdominal pain, jaundice, 
gastrointestinal distress and nausea. 1.5 mg/L [16-18]

Arsenic

Natural sources including volcanic eruption, rock 
fragmentation, mineral deposits, brackish water, 
hot spring, and anthropogenic sources including 

industrial processes, metal smelting, pesticide 
manufacturing and wood preservers.

Neurological, dermatological, 
gastro-intestinal and cardio 

renal diseases.
10 µg/l [19,20]

Cadmium
Mining, painting, alloying, electrolyzing, 

electroplating, smelting, textile and printing 
industries.

Acute abdominal pain, diarrhea, 
nausea and a choking sensation. 0.005 mg/L [13,21,22]

Table 2. Different Micro-Pollutants and its Effects on Human Health

Micro-pollutants Class Application Health effects Ref.

17α Ethinyl-estradiol (EE2) Synthetic estrogen Human Cancer risk especially in female. [23,24]

Triclosan Antibiotic Commercial disinfectant Antibiotic resistance, skin irritation, endocrine disruption, 
allergies, and carcinogenic by-products formation. [25,26]

Diclofenac Arthritis Human and veterinary
Inhibits the activity of cyclooxygenases and DNA synthesis 

through multiple, interferes with the biochemical functions of 
fish mechanisms.

[27,28]

Sulfamethoxazole Antibiotic Human and veterinary Development of bacterial resistance genes, resulting in 
emergence of multi drug resistant. [29]

Ibuprofen Analgesic Human and veterinary Dyspeptic symptoms and gastrointestinal (GI) ulcers. [30]

Tetracycline Antibiotic Human and veterinary Gastrointestinal distress, discoloration of teeth, kidney and liver. [31]

Bisphenol A Plasticizer Production of plastics 
and resins Reduced sperm quality, fertility, male sexual function etc. [32,33]

Amoxicillin Antibiotic Human and veterinary Extreme allergy to species that are sensitive which includes 
human beings. [34]

Table 1. The Major Sources, Permissible Level in Drinking Water and Health Effects of Heavy Metals
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less attracted by these pristine clay minerals[48,50,51]. Anionic con-
taminants and hydrophobic or non-polar organic pollutants, are feebly 
adsorbed by these clays, which possess enhanced hydrophilic character 
and charges on the surface[52,53]. Moreover, the pristine clay particles 
are difficult to recover and regenerate after the adsorption process and 
usually lose a significant quantity of their adsorption capacities during 
the regeneration process[54]. Therefore, the raw clay minerals require 
suitable modifications to remove these water pollutants efficiently these 
water pollutants. The suitable modification of clay minerals results in 
useful and engineered material in environmental engineering[55,56] 
and material sciences[57,58]. Organic cations with short and long-chain 
compounds are introduced within the interlayer spaces with the avail-
able exchangeable cations and the permanent negative charge of clay 
minerals. Thus, these modifications considerably change the hydro-
philic nature of clay to hydrophobic nature, which in turn is employed 
to remove efficiently several organic compounds or even anionic water 
pollutants[59]. The synthesis of nanocomposites and incorporation into 
clay minerals has become of great interest recently because of their 
physical and chemical properties and distinctive applications in the di-
verse area of research[60,61]. Modification of clay minerals mainly in-
volved two processes, i.e., chemical and physical processes. Modifying 
natural clay minerals with surfactants has shown their efficient adsorp-
tion process but their combined surface and thermal potential still need 
to be studied. Removal of several contaminants could be achieved us-
ing hybrid materials having inorganic/organic moieties[62]. Clay min-
erals physically modified by thermal activation remove intercrystallite 
water molecules and increases porosity and surface area[63]. Therefore, 
this review focussed on the applicability of natural clay and its modi-
fied form for removing toxic heavy metals and micro-pollutants from 
aqueous solutions. 

2. Use of natural clay in the removal of 
heavy metals and micro-pollutants

Kaolinite[64], montmorillonite[65], vermiculite[66], sepiolite[67], 
bentonite[68], and laterite soil[69] in their pristine form are used for 
the removal of toxic heavy metals from aqueous solutions. The sorp-
tion of diatrizoic acid (DAT), iopamidol (IOP), metformin (MTF), and 
carbamazepine (CBZ) was conducted using montmorillonite. It was re-
ported that montmorillonite could remove 70% of MTF and CBZ, 30% 
of DAT, and no removal of IOP without generation of by-products. 
Further, it was observed that the adsorption rates depend on the pollu-
tant concentrations[70]. Palygorskite-montmorillonite (PM) is used to 
treat the effluent filter material for carbamazepine. The sorption of car-
bamazepine onto PM mainly occurred through the hydrogen bonding 
between the hydrogen donor group of carbamazepine and the hydrogen 
acceptor group of the PM[71]. Montmorillonite and kaolinite are used 
for the sorption of antibiotic nalidixic acid (NA). The adsorption of 
NA on kaolinite and montmorillonite was higher at lower pH. The ad-
sorption of NA on montmorillonite is promoted by a coordination bond 
between the keto oxygen or C=N group in the pyridine ring and the 
exchangeable cations in the interlayer of montmorillonite according as 

revealed by the FT-IR analyses[72]. The adsorption capacity of various 
natural clay for heavy metals and micro-pollutants is summarized in 
Table 3.

3. Thermal modification of clay

Thermal modification of clay minerals is termed calcination[85]. 
Clay minerals are usually heated up to 200~1000°C for 2~4 hrs. The 
thermal activation of clay minerals causes the activation of clay’s ac-
tive sites, which promote the sorption of pollutants[86,87]. During cal-
cination, dehydration and then dihydroxylation occurred, which resulted 
in the reduction of mass while the porosity was increased significantly; 
the clay surface became more exposed to the ion exchange process[88]. 
It was reported that the surface properties of bentonite and kaolinite 

Raw clays Pollutant pH

Maximum 
adsorption 
capacity 
(mg/g)

Ref.

Montmorillonite
Pb(II)
Cd(II)
Ni(II)

2~7
3.71
2.45
1.76

[73]

Bentonite
Cd(II)
Cr(VI)

5
6

13.17
12.61

[74]

Sepiolite

Cr(III)
Cd(II)
Ni(II)
Cu(II)
Zn(II)
Ag(I)

3
3
7
4
7
7

14.1
32

7.56
13.8
8.67
12.6

[67]

Kaolinite
Pb(II)
Cd(II)
Ni(II)

5.7
5.5
5.7

5.3
4.0
5.2

[75]

Beidelite
Pb(II)
Cd(II)

6
83.33
45.66

[76]

Montmorillonite 
(SAz-1)

Ciprofloxacin 4.5 395 [77]

Illite (IMt-2) Ciprofloxacin 4.5 135 [77]

Rectorite Ciprofloxacin 4.5 33 [77]

Montmorillonite Tetracycline 1.5 468 [78]

Montmorillonite Tetracycline 8.7 375 [78]

Illite Tetracycline 5~6 32 [79]

Kaolinte Triclosan 3 22 [80]

Montmorillonite Triclosan 3 3.3 [80]

Natural bentonite Diclofenac 2 62.50 [81]

Sodium bentonite Diclofenac 2 40 [81]

Montmorillonite Diclofenac - 680 [82]

Bentonite Amoxicillin 2.31 53.93 [83]

Natural Bentonite 17a-Ethinylestradiol 7 5.16 ± 0.29 [84]

Table 3. Adsorption Capacities of Raw Clays for the Removal of 
Various Heavy Metals and Micro-Pollutants
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were changed substantially on heat treatment. The volatile impurities 
and physico-adsorbed water molecules were removed at 100 °C, in-
creasing the specific surface area of clay[89]. However, the specific 
surface area was reduced if the temperature was increased up to 500 
°C, mainly due to the collapse of clay layers and the dihydroxylation 
process[85]. A similar decrease in surface area was observed in kaolin-
ite and montmorillonite after the heat treatment at 750 °C[90]. Further, 
calcination of montmorillonite at 600 °C results in a decrease in sur-
face area but increases with sorption capacity[91,92]. This showed that 
the sorption potential was also affected by other factors[93]. The cation 
exchange capacity (CEC) of clay is likely to be reduced once clays are 
treated at a very high temperature; however, the temperature must be 
maintained carefully during thermal treatment[85]. The adsorption ca-
pacity of bentonite and kaolinite was decreased by calcining the solids 
from 500 to 900 °C[94]. The maximum sorption capacity of various 
heavy metals and micro-pollutants using thermally treated clays is in-
cluded in Table 4.

X-ray diffraction analysis of thermally treated bentonite at 400 °C 
showed a significant decrease in the basal spacings from 1.48 nm to 
0.97 nm[95]. A similar observation was also reported on the thermal 
treatment of bentonite clay[96]. The FT–IR spectra of thermally treated 
bentonite clay decrease in the intensity of H–O–H deformation band at 
1600 to 1700 cm-1 and O–H stretching vibrations at 3100 to 3700 cm-1 

[97]. 

4. Activation of Clay

Clay minerals are often treated with acids to modify their surface 
and remove impurities[104]. Activation of clay minerals with acids, 
caused by the opening of pores and exposure of clay edges, leads to 
an enhanced sorption capacity for several pollutants[105]. Activation of 
clay minerals with acid is found to be an effective method of mod-
ification[106]. Calcium, potassium, magnesium, iron, and metal oxides 
are also removed from clay minerals during acid treatment, increasing 
surface area and further providing open spaces for heavy metal adsorp-
tion[87,107,108]. Sulphuric, phosphoric, nitric, and hydrochloric acids 
are the most common acids used to activate clay minerals[109,110]. 
The structural changes on the surface and interlayer spaces of mont-
morillonite clay due to acid treatment are shown in Figure 1. 
Generally, the activation of clay minerals involves the treatment of 
clay with acid for the selected time at constant stirring and 

temperature. The excess free ions, such as Cl-, SO4- etc., are detached 
from the clay once it is activated and then washed with distilled water, 
dried, and employed for its applications[104].

Acid activation of bentonite clay was performed using a clay con-
centration of 6 %(w/v) under mild conditions. The XRD results of acti-
vated bentonite significantly affected the crystallinity of bentonite, 
leading to a decrease in the peak intensity, and the width of the ‘001’ 
peak was increased. FT-IR results showed that the vibrations bands at 
3417, 1640, and 3617 cm-1 are significantly changed after activation. 
Nevertheless, the layered structure of bentonite was not changed, which 
was affirmed by the presence of a weak vibrational band at 1039 cm-1. 
The increased intensity of band at 793 cm-1 and the band’s widening 
at 1041 cm-1 showed that amorphous silica is formed after activation. 
The specific surface area and pore volume were increased by 3.3 and 
2.75 times, respectively. The SEM images showed that activated ben-
tonite appeared highly compact and showed large pores than raw ben-
tonite[14]. Further, the XRD results of two clays: raw green clay 
(RGC) and raw red clay (RRC), after treating with acid, showed an in-
crease in silica due to its poor solubility in acid solutions, while the 
octahedral and exchangeable ions are significantly removed. Moreover, 
the textual analysis showed that the internal porosity, pore volume, 
specific surface area, and pore sizes were increased after activation 

Thermoactivated clay
Target 

heavy metals/
Micro-pollutants

pH

Maximum 
adsorption 
capacity 
(mg/g)

Ref.

Calcinated Bofe Bentonite
(500 °C) Ni(II) 5.3 1.91 [98]

Calcined and vibratory ball 
milled bentonite

(500 °C)
Cr(VI) ≥ 5 62.5 [99]

Turkish montmorillonite 
(100~800 °C) Cr(VI) 1~7 0.5~4.20 [100]

Verde-lodo (CVL) bentonite
500 °C Ciprofloxacin - 114.4 [101]

Natural Bentonite Clay
500 °C Tetracycline 5 388.1 [102]

Kerolite 200 °C
Sepiolite 200 °C

Atrazine
Cholirdazon - 0.468 

0.041 [103]

Table 4. Removal of Heavy Metals and Micro-Pollutants Using 
Thermally Treated Clays

Figure 1. Structural changes of montmorillonite by acid attack on the surface and interlayer spaces[111].
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with acid[112]. A similar result was also reported using bentonite acti-
vated with 0.35, 0.70, 1.0, 1.5, 2.0, 3.5, 7.0, and 10 N hydrochloric 
acid in the liquid-to-solid ratio 4 : 1 for 45 minutes[113]. 
Montmorillonite-illite type of clay was activated with sulphuric acid. 
The mineral phase analysis of montmorillonite-illite clay (MIC) and 
montmorillonite-illite activated clay MIC (AA) from XRD analyses 
showed that some magnesium and potassium, were activated during ac-
tivation, and calcium was removed, and as a result, montmorillonite 
and illite phases disappeared in the clay sample. Moreover, quartz to 
quartz inversion was also observed. The XRD image is given in Figure 
2[114].

Further, it was observed that the adsorption of heavy metals by acti-
vated clay is also influenced by the strength of the acid used during 
activation. For example, the adsorption of Cu(II) on activated paly-
gorskite clay activated by HCl showed substantial improvement with 
increasing the concentration of the acids[115]. The efficiency of vari-
ous activated clays in removing toxic heavy metals is highlighted in 
Table 5.

5. Clay modification using surfactants

Clay minerals are often modified with organic compounds[120]. 
Over the past few decades, organoclays have drawn attention in many 
areas like medicine, engineering, environmental sciences, etc.[121,122]. 
Due to the presence of chelating functional groups in the organoclay, 
heavy metals are bonded onto its surface with a stronger bond than the 
pristine clay[123]. Quaternary ammonium organo-clays are classified 
into two groups. Firstly, quaternary ammonium cations (QACs) having 
short-chain alkyl groups such as tetramethylammonium (TMA)/trimethyl-
phenylammonium (TMPA) or benzyltriethylammonium (BTEA), the 
groups of organo-clays is called adsorptive clay. Secondly, the QACs 
containing long-chain alkyl groups, for example, didodecyldimethy-
lammonium (DDDMA) and hexadecyltrimethylammonium (HDTMA) 
-clays, are called organophilic clay[124]. The presence of benzyl 
groups, long and short chain aliphatic, and often hydroxyl groups 

Figure 2. XRD image of montmorillonite-illite clay(MIC) and 
montmorillonite-illite activated clay MIC (AA)[114].

caused to increase in the basal spacing of clay along with their adsorp-
tion capability[125]. Clay with higher charge density and the surfactant 
molecules’ length increases the interlayer spacings of clay structure[126]. 
The aqueous and ethanolic solutions of hexadecyltrimethylammonium 
(HDTMA) bromide reacts with the different charge of layer silicates, 
the intercalated HDTMA formed flat-lying molecules (monolayers), 
and the charges on the layer are < 0.5 e- (per unit cell basis); flat-lying 
molecules (bilayers) for layer charges between 0.5 and 1.0 e- and bent 
paraffin-like arrangements for layer charges < 1.0 e-. For smectites and 
vermiculites with layer charges > 0.5 e-, greater layer spacing is ach-
ieved by intercalating of salt molecules from an aqueous medium rath-
er than an ethanol medium[127]. Organoclays are synthesized depend-
ing on the mechanisms of reactions that organic compounds are in-
troduced into clay minerals. Polar molecules displace water molecules 
in the interlayer space of vermiculites and smectites. Several organic 
cations exchange interlayer cations. Cation exchange and solid-state re-
actions are mainly used to prepare organoclays[128]. Organoclays are 
mostly prepared by cation exchange reactions[129]. Quaternary alky-
lammonium cations (QAC) exchange the interlayer cations of clay min-
erals in aqueous solutions. Different physicochemical conditions are 

Type of clay Activating agent
(Acid used) Target pollutants pH Adsorption capacity

(mg/g) Ref.

Palygorskite 4 M HCl Cu(II) 2-7 29.70 [115]

Montmorillonite H2SO4

Zn(II)
Cu (II)
Mn(II) 
Cd(II)
Pb(II)
Ni(II)

6.5

76.92 
2.76 
2.21 
0.62 
1.62 
4.0 

[105]

Shaltishkiai clay HCl
Ni (II)
Cu (II)
Zn (II)

80.9
83.3
63.2 

[110]

Bentonite H2SO4 Cr(VI) 5 91.7 [116]

Tunisian Bentonite HCl Cr (VI) 5 83 [117]

Attapulgite clay (magnesium silicate) HCl Propranol hydrochloride - 159.2 [118]

Montmorillonite H2SO4 2,4,5-trichlorophenol 4 33 [119]

Table 5. Removal Efficiency of Heavy Metals by Various Activated Clays under Batch Reactor
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demonstrated in the preparation of organophilic clays[130-132]. The re-
action of clay minerals and ammonium cations using a solid-state re-
action was first reported by Ogawa et al.[133]. In a solid-state reaction, 
organic molecules are intercalated within the interlayer spaces of clay 
minerals in the absence of solvent since, without solvent, it is a more 
eco-friendly and reliable process for industrialization. Cation movement 
between silicate layers is not always taking part in the intercalation of 
neutral molecules[128]. Aniline salts are intercalated using the mecha-
nochemical process with several counter ions in montmorillonite[134]. 
Ion-dipole interaction plays a key role in many solid-state reactions. 
The interlayer cations and organic molecules with polar groups are at-
tached during ion-dipole interaction. Cations on the surface interact 
with the negative part of the molecule, thereby displacing water mole-
cules from the interlayer cations[129,135].

Inorgano-organo-clay minerals are developed for the treatment of in-
dustrial wastewater [136,137]. Both organic surfactant and hydroxide 
pillaring agents are intercalated for the modification of clay minerals 
with inorgano-organo compounds[138-141]. Hence hydrophobic and 
hydrophilic compounds are removed simultaneously. Polycations of 
iron (III), aluminium (III), or titanium (IV) are intercalated into the in-
terlamellar spaces of montmorillonite and further modified with cetyl 
trimethylammonium bromide. The material showed enhanced removal 
efficiency for diuron and its three degradation products: 3-(3,4-
dichlorophenyl)-1-methylurea, 1-(3,4-dichlorophenyl) urea, and 2,4-
dichloroanilin. It was reported that hydrophobic interaction was the 
main mechanism for the adsorption of these pesticides by the organo-
inorgano-clays[138]. 

Several organic cationic surfactants (Dodecyltrimethylammonium 
bromide, Hexadecyltrimethylammonium bromide, Tetradecyltrimethyl-
ammonium bromide, Tetraphenylphosphonium bromide, Zinc Stearate) 
were used for the modification of montmorillonite. 

Sericite was modified with hexadecyltrimetyl ammonium bromide 
(HDTMA) and alkyldimethylbenzyl ammonium chloride (AMBA). 
FT-IR results show that the vibrational band at 3443 cm-1 almost van-
ished for the modified sericite, indicating the replacement of organic 
molecules with the hydroxyl group. The two new bands at 2920 cm-1 
and 2856 cm-1 were attributed to the C–H stretching and C–H scissor-
ing vibrations, respectively, which infer that the hexadecyltrimetyl am-
monium bromide and alkyldimethylbenzyl ammonium chloride are in-
troduced within the sericite clay (Cf Figure 3)[142]. A similar ob-
servation was also observed when kaolinite was modified with 
HDTMA[143]. In other studies, montmorillonite was modified with ce-
tyltrimethylammonium bromide (CTMAB); XRD results showed basal 
spacing of montmorillonite was increased from 1.52 to 1.81 nm, which 
confirmed that (CTMAB) was intercalated within the interlayer space. 
The insertion of Fe polycation, on the other hand, did not intercalate 
into the interlayer of montmorillonite[144]. The SEM image of benton-
ite modified with octadecyl benzyl dimethyl ammonium (SMB3) dis-
played a smoother surface than unmodified bentonite. Moreover, the 
SMB3 showed small size fragments and layers alike contexture, in-
dicating that bentonite is evenly distributed while the modification was 
carried out using these surfactant molecules[145]. The kaolinite modi-

fied with HDTMA (SMK) showed a significant decrease in specific 
surface area from 8.61 to 3.39 m2/g, pore volume and diameter were 
increased from 0.04 to 0.07 cc/g and 9.53~20.41 nm, respectively[146]. 
These results indicated that HDTMA was successfully intercalated 
within the interspace of kaolinite. Similar findings were reported in the 
literature in which bentonite was modified with cetyltrimethyl ammo-
nium bromide (CTMAB)/ hexadecylammonium bromide (HDTMA) or 
pillared with aluminium and then modified with CTMAB/ HDTMA 
[147,148].

Montmorillonite was modified by polyamine Gemini surfactant and 
employed in the removal of Cu(II) with a maximum removal capacity 
of 29.30 mg/g at 75 mg/L of Cu(II) initial concentration[149]. In an-
other study, modification of rectorite with stearyl trimethylammonium 
chloride removes Cr(VI) with approximately 400 mmol/kg via electro-
static interactions in acidic pH conditions[150]. A comparative study 
for the sorption of bentonite (BT), bentonite modified with hexadecyl-
trimethylammonium (BT-HDTMA), and phenyl fatty hydroxamic acid 
(BT-PFHA) showed that the monolayer adsorption capacities of BT, 
BT-HDTMA and BT-PFHA for Pb(II) were found to be 149.3, 227.3 
and 256.4 mg/g, respectively. Further, the sorption data were fitted 
well to the Langmuir, Dubinin-Radushkevich, and Temkin models. The 
kinetic data is fitted well with the pseudo-second-order kinetic model, 
and the thermodynamic studies revealed that the adsorption was feasible, 
spontaneous, and exothermic[151]. Single and complex modified ben-
tonite was synthesized using iron (hydr)oxides (Fex(OH)y), manganese 
oxides (MnxOy) and cationic surfactants, cetyltrimethylammonium bromide 
(CTMAB), and poly(dimethyldiallylammonium chloride) (PDMDAAC) 
and employed in the sorptive removal of arsenic. Results showed that 
arsenic removal greatly depends upon the combination, type, and 
amount of modifiers used in clay modification. The removal of arsenic 
in single modified bentonite was in the order Fex(OH)y-Bent > 
MnxOy-Bent > CTMABBent > PDMDAAC-Bent. Moreover, the com-
plex modified bentonite, manganese oxide, and PDMDAAC showed 
the best arsenic removal due to the presence of several manganese oxide 
particles and the change in the surface properties of bentonite. The de-
crease in the removal of arsenic was observed with CTMAB-MnxOy-Bent, 
CTMAB-, or PDMDAACFex(OH)y-Bent[152]. The removal efficiency 
of heavy metals and micro-pollutants using organo- and organo-in-
organo clays are summarized in Table 6.

Figure 3. FT-IR spectra of sericite, HDTMA-sericite (H1) and AMBA-
sericite (A1)[142].
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HDTMA: hexadecyltrimethylammonium, BH: bentonite modified 
with hexadecyltrimethylammonium, BAH: bentonite pillaring with alu-
minium and modified with hexadecyltrimethylammonium, LCH: local 
clay modified with hexadecyltrimethylammonium, LCAH: local clay 
pillaring with aluminium and modified with hexadecyltrimethylammonium, 
HDPy-Bn: bentonite modified with hexadecylpyridinium, HDTMA-Bn: 
bentonite modified with hexadecyltrimethylammonium, BE-Bn: benton-
ite modified with benzethonium, HDPy-Ver: vermiculite modified with 
hexadecylpyridinium, HDTMA-Ver: vermiculite modified with hex-
adecyltrimethylammonium, BE-Ver: vermiculite modified with benze-
thonium, CTMAB: cetyltrimethylammonium bromide. 

6. Grafting or silylation of clay

Grafting or silylating the surface of clay minerals has drawn greater 
attention because the grafted materials showed varied applications in 
environmental and chemical engineering[162]. Various types of clay 
functionalized with different silanes are given in Table 7. In general, 
there are three possible sites for silylation/grafting of silane at the sur-
face of the clay, i.e., the external surface, internal surface, and broken 
edges of clay minerals, as shown in Figure 4[163,164].

The reactive sites of montmorillonite were increased on acid treat-
ment, leading to greater silane molecules loading[56,165]. The inter-
actions of clay minerals with silane molecules were facilitated by 
increasing the concentration of silane and the temperature of the 

Clay Type of modification Target pollutants pH Adsorption Capacity 
(mg/g) Ref.

Kaolinite Hexadecyl trimethyl ammonium bromide Cr (VI) 3 27.8 [143]

Kaolinite HDTMA
As (III)
As (V)

4~8
2.33 
2.88 

[146]

Bentonite

BH
BAH
LCH

LCAH

As (III)
4.5

2.792 
2.247 
1.824 
2.184 

[147]

Bentonite

BH
BAH
LCH

LCAH

As (V) 4.5

3.449
8.937
2.287
4.255

[147]

Bentonite

Vermiculite

HDPy-Bn
HDTMA-Bn

BE-Bnechanism
HDPy-Ver

HDTMA-Ver
BE-Ver

Cr(VI) 4.5

27 
43 

17.5 
3.7 
0.5 
0.7 

[153]

Bentonite Hexadecyl trimethyl ammonium bromide Cr(VI) 6 19.01 [143]

Montmorillonite CTMAB-FeIII
As (III)
As (V)

- 16.13 
15.5 

[154]

Bentonite Bencylhexadecyldimethyl ammonium chloride
Cu (II)
Zn (II)

5
50.76 
35.21 

[155]

Bentonite Hexadecyl trimethyl ammonium bromide
Amoxicillin

Cu(II)
- 33.51 [156]

Montmorillonite Didodecyldimethyl ammonium bromide (DDDMA) Bisphenol A 4~5 20 [157]

Montmorillonite
1,10-didodecyl-4,40-trimethylene bispyridinium bromide

1,10-dihexadecyl-4,40-trimethylene bispyridinium bromide
Bisphenol A 6

222.22 
208.3 

[157]

Vermiculites (1,1'-didodecyl-4,4'-trimethylene bispyridinium bromide Sulfamethoxazole - 63.14 [158] 

Montmorillonite cetyltrimethylammonium cation (CTA+) Ehinyl estradiol (EE2) - 4.38 [159]

Montmorillonite 
Octadecyltrimethylammonium bromide (ODTMA) + 

hydroxy aluminium (Al)
Bisphenol A - 109.89 [160]

Bentonite
Magadiite

Dioctadecyldimethylammonium Triclosan - 422 [161]

Magadiite Dioctadecyldimethylammonium Triclosan - 543 [161]

Table 6. Removal of Heavy Metals and Micro-Pollutants using Organo- and Organo-Inorgano Clays
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reaction[166]. The surface of bentonite was grafted with 3-amino-
propyltriethoxysilane (APTES), allowing its nano-space to be utilized 
for intercalation of cations, bio-molecules, polymeric materials, drug 
delivery, and several commercial uses[167]. “Flip mechanism” de-

scribes the mechanism of amine grafted onto silica minerals. Firstly, 
amine forms a hydrogen bond with the hydroxyl group on the surface 
of silica particles, or proton is transferred from the silica particles to 
amine forming an ionic bond. On the silicon side of silane molecules, 

Functionalized 
clay

FTIR XRD BET surface area

Ref.
Assignment Wavenumber 

(cm-1)
Change in 
d-spacing

Specific 
Surface area 

(m2/g)

Pore Volume 
(cm3/g)

Pore 
size

K10/MPTS

C-H
C-H
C-S
Si-O
OH

2929
1402
682
465
3500

- - - - [173]

BN-SH

-OCH3

-CH2

-SH
Si-OR
Si-OH

2931
2843
2559

1000-1100
950

No change in 
d-spacing

93 0.24 131.26 Å [174]

BN-APTES

N-H
C-H
Si-C

Si-O-Si

3300
700
1340

1200-1100

2.01 nm - - - [167]

MSEP-GF

MgOH
H2OCordinated

H2OZeolite

C-H-O-CH3

SH
Si-O

Si-O-Si
Si-O-Mg

3688.62, 691.07, 647.44
3563.90

3415.93, 1663.81
2932.59
2562.66

1210.59, 1078.54, 980.17
1019.45

470.72, 441.31

No change in 
d-spacing

84.78 - - [175]

AS-APTES

CH2asym

CH2symm

Si-O-Si
O-Si-O

2920
2850
1060

560 and 480

2θ=8.63 59 0.110 7.66 nm [176]

MPTS/BENT
CH3

CH2

SH

2,914
2,831
2555

No change in 
d-spacing

4.42 0.071 20.15 nm [177]

BNAPTES
CH2

C-N
1485
1319

No change in 
d-spacing

12.50 0.051 165.13 Å [178]

Abbreviations: AS-activated sericite, BN-Bentonite, K10- Montmorillonite, MPTS-3-mercaptopropyletrimethoxy silane, APTES-3-aminopropylrtriethoxy silane, 
MSEP-GF- 3-mercaptopropyletrimethoxy silane functionalized sepiolite.

Figure 4. Probable sites for grafting or silylation, i.e. (a) internal clay surface, (b) external surface of clay, (c) broken edges of clay.

Table 7. Characterization of Different Clay Functionalized with Different Silanes
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self-catalyzation of hydrogen-bonded molecules occurred, forming a 
covalent bond with siloxane. Due to this condensation, the interaction 
of the amine group at the surface is lost, and the amine is far apart 
from the surface. Fast stabilization occurs when a higher amount of 
ethoxy group on the APTES is present. Therefore, the original 
amine-down position of the silane molecule is changed to the amine- 
up-position resulting in a ‘flip mechanism’(Figure 5)[168,169].

The grafting of silane was not favored using the nonpolar solvents 
(e.g., toluene)[50,161,162], while intercalation of silane was observed 
when polar solvents (e.g., water/ethanol mixture and ethanol) was used 
as a dispersing medium[172]. 

Nano-texturization method was employed for the functionalization of 
palgorskite clay with mercapto and amino silane to efficiently remove 
cadmium from polluted soils and water. Results show that functional-
ized materials significantly increased the adsorption capacity compared 

to the unmodified palgorskite clay. The enthalpy change was positive, 
and the endothermic sorption process(Figure 6)[179].

The interlayer spaces of vermiculite were incorporated with CYS 
and CTA and utilized for the adsorption of Hg(II). The intraparticle 
diffusion, controls the adsorption kinetics of Hg(II). Batch adsorption 
of Hg(II) using modified 3-MPS is similar to Na-VT and follows pseu-
do-second-order kinetics. Higher breakthrough volume was achieved 
using vermiculite modified with 3-MPS in column studies. The adsorp-
tion is irreversible[180]. As shown in Table 8, the adsorption capacities 
of various functionalized clay possessed relatively high adsorption ca-
pacity for heavy metals and micro-pollutants in the aqueous medium.

7. Clay based composites

Clay and clay-based composites materials are found to be promising 

Figure 5. Interaction types between silicate surface material and APTES in absence of water (a) proton transfer, (b) Hydrogen bonding, (c) 
Condensation of APTES with silica particle[169]. 

Figure 6. Schematic of sorption mechanisms of Cd(II) on PAL, PAL-SH and PAL-NH2[179].
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in the remediation of toxic heavy metals from an aqueous environment 
due to their large surface area, low-cost, stability, high cation exchange 
capacity, high porosity, and the ability to swell to a large extent, which 
overcomes with the conventional methods. One or more components of 
composites are functionalized to increase the sorption efficiency 
[191-194]. Cellulose -montmorillonite[195], poly (acrylic acid)/organo- 
montmorillonite[196], bentonite/NZVI[197]; Kaolinite/ZrO and kaolinite/ 
TBA[198]; chitosan-clay nanocomposite[199] are some clay-based 
composites employed in the removal of heavy metal ions. The adsorp-
tion capacity of various clay-based nanocomposites in the removal of 
heavy metal ions are summarized in Table 9.

Liquid phase reduction was employed for the synthesis of benton-

ite-supported nanoscale zero-valent iron (B-nZVI) and utilized in the 
removal of Cu(II), Pb(II), and Cr(VI) from electroplating wastewater. 
More than 90% removal efficiency was achieved using the composite 
material. Further, ethylenediaminetetraacetic acid (EDTA) solution was 
used to desorb the heavy metals, but the removal capacity of Cr(VI) 
was decreased by approx. 70% using the reutilized material[200]. 
Single and mixed pillared clays (Zr-Bent, Al-Bent, Al−Zr-Bent, 
Ce-Zr-Bent, Ce-Al−Zr-Bent, Ce-Al-Bent) were utilized for the adsorp-
tion of Cu(II), Co(II) and Cd(II). The adsorption of heavy metals was 
higher for pillared clays rich in cerium. The experimental data is well 
fitted to the second-order-kinetic model and Langmuir adsorption iso-
therm[201]. 4-aminoantipyrine was immobilized onto bentonite and 

Clay Type of modifi-cation Target heavy metals/ 
Micro-pollutants pH Adsorption Capacity 

(mg/g) Ref.

K10 MPTS Ni(II) - 5.3 [173]

Attapulgite APTES Hg(II) 3~11 90 [181]

Activated Sepiolite MPTS Cr (VI) 2 60 [182]

Monmorillonite MPTS Cd (II) 7.44 30.10 [183]

Bentonite MPTS Cd (II) 6.40 27.54 [184]

Palygorskite (PAL) MPTS Cu (II) < 5.83 30 [185]

Activated Sericite APTES Cd (II) 5 5.747 [176]

Bentonite APTES
Pb(II)
Hg(II)
Cu(II)

5~6
110.0 
102.7 
45.8 

[186]

Montmorillonite AEPE Hg(II) 4 46.1 [187]

Hectorite AEPE Hg(II) 4 54.7 [187]

Sepiolite APTES

Atenolol

-

2.66 

[188]Ranitidine 3.14 

Carbamazepine 0.06 

Sepiolite OTES

Atenolol

-

13.32 

[188]Ranitidine 16.66 

Carbamazepine 0.40 

Sepiolite CPTES

Atenolol

-

12.78

[188]Ranitidine 20.12

Carbamazepine 0.35

Sepiolite TFS

Atenolol

-

9.99

[188]Ranitidine 8.17

Carbamazepine 0.65

Sericite MPTS
Diclofenac

clofibric acid
6
7

1.868 
1.749 

[189]

Bentonite MPTS
Tetracycline

Triclosan
4

16.64 
18.87 

[177]

Bentonite APTES
Tetracycline

Triclosan
4

15.70 
16.91 

[178]

Bentonite MPTS 17α-ethinylestradiol 4 8.1 [190]

Bentonite APTES 17α-ethinylestradiol 4 4.28 [190]
K10: Montmorillonite, MPTS: 3-mercaptopropyletrimethoxy silane, APTES: 3-aminopropylrtriethoxy silane, AEPE: 2-(3-(2-aminoethylthio) propylthio)ethanamine, 
OTES: Triethoxy(octyl)silane, CPTES: 3-(chloropropyl)- triethoxysilane, TFS: Triphenylsilane

Table 8. Removal of Heavy Metals and Micro-Pollutants using Functionalized Clay
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employed in the elimination of Hg(II), Cr(III), and Pb(II) from an 
aqueous solution. The maximum adsorption capacity of the solid mate-
rial was found to be 52.9, 52.9, and 55.5 mg/g for Hg(II), Cr(III), and 
Pb(II), respectively[202]. E-coli-kaolinite nanocomposite was used in 
the adsorption of Cr(VI), Cd(II), Fe(III), and Ni(II) from water with 
adsorption capacity of 4.6 10.3, 16.5, and 6.9 mg/g, respectively[203].

Synthesis of polymer-layered silicate nanocomposite includes sol-
ution blending, in-situ polymerization, and melt blending. In the sol-

ution blending method, prepolymer and polymer are soluble in a sol-
vent such as toluene, chloroform, or water resulting in exfoliation of 
layered clay. After mixing the layered clay and polymer/prepolymer, 
intercalation of polymer chains and solvent displacement occurs within 
the clay’s interlayer[204,205]. Desorption of solvent molecules results 
in the gaining of entropy, which is responsible for intercalation in the 
solution blending[206]. Chitosan gold clay nanoparticles (Ch/AuNPs/clay) 
and chitosan silver clay nanoparticles (Ch/AgNPs/clay) were synthe-

Clay Type of modification Target heavy metals/
Micro-pollutants pH Adsorption Capacity 

(mg/g) Ref.

Sepiolite
Acitvated with 4 M HCl +

nZVI
Cr (VI)
Pb (II)

6.0
43.86 
44.05 

[210]

Montmorillonite nZVI
As (III)
As (V)

7.0
59.9 
45.5 

[211]

Bentonite Chitosan
Ni (II)
Cu (II)
Pb (II)

4.0
12.35 
20.9 
28.77 

[212]

Bentonite nZVI Cr (VI) 5.0 60.5 [197]

Montmorillonite + Kaolinite TiO2

Cu (II)
Cd (II)
Zn (II)
Pb (II)

2.0~6.4

42.9 
13.8 
15.4 
71.9 

[213]

Bentonite Polymeric Al/Fe
As(III)
As (V)

7.0~9.0
3.0~6.0

21.233 
19.11 

[214]

Montmorillonite ZnO-NP
Cu(II)
Pb(II)

4.0
54.06 
88.50 

[215]

Vermiculite Chitosan
Cd(II)
Pb(II)

4
58.5 
166.7 

[216]

Sepiolite Chitosan
Cu(II)
Pb(II)

-
75 
100 

[217]

Montmorillonite CTAB/cellulose Cr(VI) 3.8~5.5 22.2 [195]

Montmorillonite PANI/Starch Cr(VI) 2 208.6 [218]

Clay PANI Pb(II) 5 7.4 [219]

Bentonite Chitosan/Polyninyl alcohol Hg(II) - 360.74 [220]

Laterite Polyanion, polystyrene sulfonate Tetracycline 4 2.85 [221]

Montmorillonite Titanium pillaring

Amoxicillin
Imipramine
Diclofenac

Paracetamol

-

4.48 
91.51 
23.83 
22.08 

[222]

Montmorillonite β-cyclodextrin Bisphenol A - 0.1 [223]

Bentonite Humic acid 2,4- dichlorophenol 6.5 14.23 [224]

Na-Montmorillonite Alginate 4-nitrophenol 5~6 27.1 [225]

Kaolin Aluminum-Pillared + Sodium Alginate Ciprofloxacin 4 68.36 [226]

Zeolites Fe3O4

Diclofenac
Naproxen

Gemfibrozil
Ibuprofen

7

0.0996 
0.098 
0.0978 
0.0974 

[227]

OMMT: Organically modified montmorillonite (C20A), ZnO-NP-Zinc oxide nanoparticle, TiO2-Titanium dioxide, nZVI- nano zerovalent iron, 
CTAB: Cetyltrimethylammonium bromide,  PANI: polyaniline, Fe3O4

Table 9. Clay Based Nanocomposites for the Removal of Toxic Heavy Metal Ions and Some Micro-Pollutants
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sized by solution blending method. From the SEM image[Figure 7(a), 
(b), (c), the (Ch)/Clay composite comprised several layered structures 
with bulky flakes and interlayer spaces. While in the case of 
(Ch)/AuNPs/Clay and (Ch)/AgNPs/Clay nanocomposites, there was a 
significant decrease in the interlayer spaces of clay, which reaffirmed 
the impregnation of the chitosan assembled on nanoparticles between 
the clay layers. It was also observed that (Ch)/AgNPs and (Ch)/AuNPs 
were primarily circular in shape and poly-dispersed from the trans-
mission electron microscope (TEM) analysis. Moreover, the TEM im-
ages showed that the prepared nanoparticles are well stabilized due to 
the interaction with the free amino groups of chitosan [Cf Figure 7(d) 
and (e)]. Further, in the EDX spectra, the intense and distinctive opti-
cal absorption peaks were observed around 3 keV and 2.1 keV due to 
the surface plasmon resonance (SPR) of metallic silver (Ag) and gold 
(Au) nanocrystals, respectively[Figure 7(f) and (g)][207]. 

In situ polymerization method involves swelling of layered silicate 
inside the monomer solution resulting in polymer formation between 
intercalated sheets. Before swelling of layered silicate by monomer, 
heat, or radiation, organic initiator or diffusion of appropriate initiator 
or by fixing catalyst through cationic exchange inside the interlayer is 
employed for the initiation of polymerization[204]. Montmorillonite 
clay nanocomposite (PPy-OMMT NC) was prepared via in situ poly-
merization of pyrrole monomer. From the FT-IR spectrum of the 
Ppy-OMMT NC3, the C–H deformation, C–H stretching vibration, con-
jugated C–N stretching, and pyrrole ring stretching are observed at 
824~958 cm-1, 1081 cm-1, 1423 cm-1, and 1513 cm-1, which confirmed 
the presence of PPy moieties in the nanocomposite[Fig. 8(c)]. The 

XRD data of Ppy-OMMT NC3 could not show any distinct peak, 
which suggests that almost all the clay sheets in the polymer matrix 
are exfoliated. The small angle X-rays (SAXS) pattern also revealed 
that no low angle diffraction occurred with the nanocomposite prepared 
by in situ polymerization. The studies show that the insertion of poly-
pyrrole has successfully exfoliated the OMMT clay sheets[Fig. 8(b)]. 
High-resolution transmission electron microscopic images (HR-TEM) 
of OMMT show sheets as black strips, while in Ppy-OMMT NC3 
these strips are well distributed(Fig. 8). The SEM image of OMMT 
show flaky structure, after modification with PPy, the OMMT clay 
structure was covered by polypyrrole(Fig. 8)[208].

In the melt blending method, the molten form of polymer matrix was 
mixed with layered silicate. If the selected polymer and layer surfaces 
were appropriately suited, the polymer crept into the interlayer gallery, 
resulted from the formation of exfoliated or intercalated nanocomposite 
[204]. Al-pillared-montmorillonite (AlPMt)/poly(methyl methacrylate) 
(PMMA) nanocomposites wwer synthesized via melt blending method 
(MBM) and solution blending method (SBM). The FT-IR spectra of 
AlPMt/PMMA nanocomposite showed that the interaction of AlPMt 
and PMMA proceeded via C=O and C-O groups[Fig. 9(a)]. The XRD 
patterns of AlPMt/PMMA nanocomposite displayed in increased amor-
phous nature. The characteristic reflection of AlPMt was not found in 
XRD patterns since AlPMt was homogeneously dispersed within 
PMMA matrix[Fig. 9(b)]. The TEM image of AlPMt/PMMA (2.5 
wt%) nanocomposite for MBM is shown in Fig. 9(c). Clay platelet 
(dark zone) was observed using this method. In the polymer matrix, 
the pillared clay layers were distributed evenly and homogeneously, 

Figure 7. SEM images of Ch/Clay (a), Ch/Clay/AuNPs (b), Ch/Clay/AgNPs (c); TEM images of Ch/Clay/AuNPs (d), Ch/Clay/AgNPs (e); EDX 
image of Ch/Clay/AuNPs (f), Ch/Clay/AgNPs (g)[207].
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which was evidence of the intercalated morphology. The homogeneity 
of dispersions from the image is on a nanometer scale, which agrees 
with the XRD results[209].

It is observed that the mechanistic pathway in removing pollutants 

involved surface complexation[187,202-205,207,210]. The electrostatic 
interaction[212,213,218] and the hydrophobic interactions[130,181] sig-
nificantly remove micro-pollutants using clay-based composites. 
Moreover, the ion exchange[214] and surface complexation[217] were 

Fig. 8. Transmission electron microscopic images of (a) OMMT and (b) Ppy-OMMT NC3,and scanning electron microscope of (c) OMMT and 
(d) Ppy-OMMT NC3[208].

Fig. 9. (a) FTIR-ATR spectra of AlPMt/PMMA nanocomposites with MBM, (b) XRD patterns of AlPMt/PMMA nanocomposites with MBM and 
(c) TEM images of AlPMt/PMMA (2.5 wt.%) nanocomposites synthesized via MBM[209].
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found to occur in removing micropollutants’ toxic heavy metal ions 
from the aquatic environment by clay-based composite using clay-based 
materials.

8. Conclusion and future perspective

This review broadly discussed various techniques employed for 
modifying different types of clays. Also, different types of clay-based 
materials were comprehensively reviewed for their efficiency in the re-
mediation of aqueous waste contaminated with toxic heavy metals and 
emerging micro-pollutants. The surface complexation is the prominent 
mechanism involved in removing toxic heavy metal ions by clay-based 
composite, whereas the electrostatic interaction plays a significant role 
in micro-pollutants removal using these types of composite. Thermal 
and acid-activated clay is simple, easy to prepare, and has an enhanced 
adsorption capacity. The modifications of clay minerals with surfac-
tants are promising adsorbents for decontaminating different pollutants 
from wastewater. However, the intercalated surfactant might leach into 
the surrounding solutions, which leads to secondary contamination of 
water. Silylation of clay minerals is a promising method since the or-
ganosilanes are immobilized through strong covalent bonding into the 
clay network, which further prevents the leaching of the organic moi-
eties into the surrounding environment. Moreover, the silylated materi-
als exhibit more enhanced adsorption selectivity and efficiency for re-
moving pollutants from aqueous solutions. 

Even though enormous work is carried out and much literatures has 
reported the removal of heavy metals and micro-pollutants using 
clay-based advanced materials from the aquatic environment, the per-
spective of scaling up the laboratory trials to the technology develop-
ment for real application is still a challenge for researchers. The ad-
sorbent is designed in such a way that the clay-based materials are 
eco-friendly, have no hazardous by-products, and have a high sorption 
capacity towards these pollutants. Moreover, simultaneous removal of 
anionic, cationic, and non-ionic pollutants is a real challenge using 
these advanced materials to simulate the complex matrix. Further, there 
is a challenge associated with the disposal of utilized materials and re-
covery of the pollutants, especially the toxic metal ions, for the poten-
tial future implications.
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