• Title/Summary/Keyword: Water reducing agent

Search Result 267, Processing Time 0.026 seconds

Analysis of the Possibility of Rapid Quality Appraisal of Water-Reducing Agents Using the Liquid Densimeter and pH Meter (액체 밀도계 및 pH meter기를 이용한 감수제의 신속품질평가 가능성 분석)

  • Kim, Min-Sang;Hyun, Seong-Yong;Baek, Cheol;Jo, Man-Ki;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.210-211
    • /
    • 2017
  • According to KS F 2560, water-reducing agents used when mixing concrete are to undergo quality evaluation testing slump, air contents, setting time, etc., when delivered from the admixture factory to the ready mixed concrete site. Yet in actual acceptance testing this could be substituted by the score report of the admixture company, in which a possibility of low reliability lies. Therefore this study sought to analyze whether by artificially changing the solid content rate of lignin- and naphthalene-based water-reducing agents and using a liquid densimeter evaluate the quality of the admixture. The results showed that the Type B liquid densimeter was most appropriate and 50cc the most appropriate capacity for the mass cylinder. Also, judging from the changes in density and pH according to the changes in solid content rate, it concludes that a rapid appraisal of the quality of lignin- and naphthalene-based water-reducing agents would be possible using a Type B liquid densimeter.

  • PDF

Analysis of aqueous environment iron dissolution in different conditions (조건의 변화에 따른 수중 환경 내에서의 철 용해 분석)

  • Bae, Yeun-Ook;Min, Jee-Eun;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.807-810
    • /
    • 2008
  • Permeable reactive barriers containing Zero-valent iron (ZVI) are used to purify ground-water contaminants. One of the representative contaminant is trichloroethylene (TCE). ZVI can act as a reducing agent of TCE. When ZVI is oxidized to Ferric iron, TCE reduced to Ethene, which is non-harmful matter. As a ZVI becomes ferric iron, the reducing effect decreases and iron becomes unavailable. So, constant reduction of TCE requires the regular supply of reducing agent. So, we use Iron-reducing bacteria(IRB) to extend the TCE degrading ability. We perform three experiment DI water, DI water with medium, and DI water with medium and IRB. By the experiment we try to found the dissolve ability.

  • PDF

A Study on the Properties of Concrete Using Water Reducing Agent (감수제(減水劑)를 사용(使用)한 콘크리트의 제성질(諸性質)에 관(關)한 연구(硏究))

  • Kang, Sin Up;Kim, Seong Wan;Sung, Chan Yong
    • Korean Journal of Agricultural Science
    • /
    • v.13 no.1
    • /
    • pp.90-102
    • /
    • 1986
  • This study was performed to obtain the basic data which can be applied to the use of concretes. The data was based on the properties of concrectes depending upon water-cement ratios and addings to compare those of plain concrete. The results obtained were summarized as follows; 1. In case the proper quantity of water reducing agent was added, unit weight of water is decreased to 12.9% with WR-LG of water reducing set standarding agent and to 8.6% with HF-SP of high fluid agent and to 17.2% with AH-WR of water reducing set accelerating agent, respectively, as compared with plain concrete. With the increase of water reducing agent content unit weight of water was greatly decreased. 2. The adding rate of water reducing agent which produce maximum strength was 0.2% with WR-LG and 0.4% with HF-SP and AH-WR, respectively. The increasing rates of strengths were showed that WR-LG is 24.1% and that HF-SP is 41.8% and that AH-WR is 43.3%, respectively, as compared with plain concrete. 3. The correlations between compressive and tensile strength were highly significant as a straight line. the multiple regression equations of compressive and tensile strength were computed with the variables of curing age and addition of water reducing agent. They were highly significant. 4. In case the proper quantity of water reducing agent was added, the correlations between water-cement ratio and compressive strength were highly significant as a straight line. The increasing rates of strength were showed higher than the decreasing rates of water cement-ratio.

  • PDF

An Experimental Study on the Analysis of Concrete Properties According to the Over-Dosage of AE Water-Reducing Agent (AE감수제 과잉투여에 따른 콘크리트 특성 분석에 관한 실험적 연구)

  • 김정기;한천구;반호용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1991.04a
    • /
    • pp.15-18
    • /
    • 1991
  • This study is designed for analyze the concrete properties according to the over-dosage of AE water-reducing agent; is aimed to analyze the effect of slump, air content, compressive strength of concrete and for presenting the reference data on the practical use.

  • PDF

Characterizations of Pt-SPE Electrocatalysts Prepared by an Impregnation-Reduction Method for Water Electrolysis (함침-환원법으로 제조된 수전해용 Pt-SPE 전극촉매의 특성)

  • Jang, Doo-Young;Jang, In-Young;Kweon, Oh-Hwan;Kim, Kyoung-Eon;Hwang, Gab-Jin;Kang, An-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.4
    • /
    • pp.440-447
    • /
    • 2006
  • Solid polymer electrolyte(SPE) membrane with electrodes embedded on both faces offer unique possibilities for the electrochemical cells like water electrolyzer with fuel cell. The Nafion 117 membrane was used as the SPE, and $Pt(NH_3)_4Cl_2$ and $NaBH_4$ as the electrocatalysts and reducing agent, respectively. The 'impregnation-reduction(I-R) method' has been investigated as a tool for the preparation of electrocatalysts for water electrolyzer by varying the concentration of reducing agent and reduction time at fixed concentration of platinum salt, 5 mmol/L. Pt-SPE electrocatalysts prepared by non-equilibrium I-R method showed the lowest cell voltage of 2.17 V at reduction time, 90 min and with concentration of reducing agent 0.8 mol/L and the cell voltage with those by equilibrium I-R method was 2.42 V at reduction time, 60 min and with concentration of reducing agent 0.8 mol/L. The cell voltage were obtained at a current density $1\;A/cm^2$ and $80^{\circ}C$. In water electrolysis, hydrogen production efficiency by Pt-SPE electrocatalyst is 68.2% in case of non-equilibrium I-R method and 61.2% at equilibrium I-R method.

Performance Evaluation of Prepackaged-Type Low Shrinkage Surface Preparation materials Using Redispersible Polymer Powder (재유화형 분말수지를 이용한 프리페키지드형 저수축 표면조정재의 성능평가)

  • ;Demura, Katsunori
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.368-373
    • /
    • 1998
  • Prepackaged system consists out of a dry mix which contains cement, sand, redispersible polymer powder and admixtures in the right proportions. The purpose of this study is to evaluate the quality of prepackaged-type polymer-modified mortar products using redispersible poly(ethylene-vinyl acetate)(EVA) powder. Polymer-modified mortars using the redispersible polymer powder with powdered with powdered shrinkage-reducing agent were prepared with cellulose fiber contents of 0, 0.5, 1.0% and shrinkage-reducing agent contents of 0, 4%, and tested for drying shrinkage, strength, adhesion in tension, water absorption. From the test results, the prepackaged-type polymer-modified mortar products with 4% of shrinkage-reducing agent content give good properties. and that their properties largely depends on the shrinkage-reducing agent content rather than the cellulose fiber contents.

  • PDF

An Experimental Study on Durability of Mortar and Concrete using Shrinkage reducing typed Superplasticizer (수축저감형 혼화제를 이용한 모르타르 및 콘크리트의 물리적 특성에 관한 기초적 연구)

  • Woo, Hyung-Min;Park, Hee-Gon;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.6
    • /
    • pp.561-569
    • /
    • 2016
  • Concrete is cheap, easy to deal with, and the quality is satisfactory. Also, it is one of the easiest materials to get because chemical composition of cement is similar to chemical composition of surface. On the other hand, it is so vulnerable to transform because of weak binding capacity and low binding energy that it produces cracks. Cracks decline durability, usability, safety of structures and damage exterior. In order to decline drying shrinkage crack, this study used shrinkage reducing typed Superplasticizer, which is combination of and water-reducing agent for convenience, different with existing study using AE agent, water-reducing agent, shrinkage reducing agent,. Considering SRS field application possibility, this study planned to mix concrete and mortar generally used in ready-mixed concrete company and did basic experiment depending on a change of SRS content ratio and admixture. Based on the experiment result. It is judged that SRS admixture 2% is proper ratio when Given the intensity and length change. Also mass combination will conduct follow-up studies.

Practical Use of Self-compacting Concrete by Hydraulic Composition Containing a Segregation-Reducing Agent (수경성 물질용 분리저감제를 사용한 무다짐 콘크리트 실용화 연구)

  • 손유신;이승훈;김규동;김경태
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.275-280
    • /
    • 2001
  • Recently, self-compacting concrete is applied in order to achieve workability improvement and rationalization in construction. But self-compacting concrete using viscosity agent has a difficulty in practical use because viscosity agent is invested small quantity and by man-power. Therefore in this paper we have been focused on the development and practical use of self-compacting concrete by hydraulic composition containing the segregation-reducing agent. According to mix variable, we find out right quantity of water, binder and rate of admixture replacement, and also we find out the optimum mix proportion. In the result, self-compacting concrete by hydraulic composition containing the segregation reducing agent gave satisfaction with standard and its demand will increase in the future.

  • PDF

Characteristics of concrete intensity using high early strength AE water reducing agent (조강형 AE감수제를 사용한 콘크리트의 강도발현 특성)

  • Kim, Jung-Tai;Kim, Seung-Han;Jang, Seck-Soo;Jung, Yong-Wook;Yeo, In-Dong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.793-796
    • /
    • 2008
  • Recently early strength concrete has been required for economical assurance and the prevention of frost damage in winter through air reduction in construction of concrete structures. This study presented the optimum condition revealing compressive strength 5MPa which has the possibility of removal of form in 24 hours, and researched the changes of unit weight of cement types of high early strength AE water reducing agents, characteristic of compressive strength expression as cure temperature conditions and slump or airspace. Test results showed at $15^{\circ}C$ with compressive strength of 5MPa that premature removal of form was possible in case of using highly early strength PC water reducing agent with unit weight of cement 360 ; 22hours faster than 10, unit weight 360 ; 20hours faster than 7, unit weight 390 ; 18 hours faster than 4 comparing with OP water reducing agent. And at $5^{\circ}C$ in case of using highly early strength PC water reducing agent with unit weight of cement 330 ; 32hours faster than 10, unit weight 360 ; 30hours faster than 7, unit weight390 ; 27hours faster than 4 comparing with OP water reducing agent. Therefore as the temperature rises $10^{\circ}C$, compressive strength of 5MPa reaching hour shortens 10 hours.

  • PDF

Shrinkage Properties of High Performance Concrete with Shrinkage Reducing Agent (수축저감제를 사용한 고성능 콘크리트의 수축특성)

  • Koh, Kyung-Taek;Kim, Do-Gyeum;Han, Cheon-Goo;Lee, Jang-Hwa
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.181-188
    • /
    • 2005
  • Generally, high performance concrete has characteristics such as low water-cementitous material ratio, lots of unit binder powder, thus the drying shrinkage and autogenous shrinkage are tend to be increased. The purpose of this study is to investigate the effect of the glyclos based shrinkage reducing agent on the drying shrinkage and autogenous shrinkage of high performance concrete with 30% of water-cemetitious material ratio as a study to develop the technology to reduce the concrete shrinkage. Test results show that the drying and autogenous shrinkage of high performance concrete are reduced by about 20~35% at the mixing ratio of shrinkage reducing agent of 0.5%, and 1.0%, compared with plain concrete. Therefore, it analyze that the using of shrinkage reducing agent is effective to reduce the drying shrinkage and autogenous shrinkage of high performance concrete.