• Title/Summary/Keyword: Water reducing agent

Search Result 267, Processing Time 0.029 seconds

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

A STUDY ON MICROLEAKAGE OF COMPOSITE RESIN AFTER SURFACE TREATMENT (표면 처리방법에 따른 복합레진의 미세누출에 관한 실험적 연구)

  • Lee, Chang-Woo;Kim, Jung-Wook;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.1
    • /
    • pp.103-115
    • /
    • 1998
  • Adhesion of composite resin to tooth structure has been of tremendous signgicance in clinical dentistry. Due to the lack of adhesion between composite restorative resins and enamel and dentin, microleakage occurs at the tooth/restoration interface. This may lead to discoloration, secondary caries, marginal breakdown, postoperative sensitivity, and even pulpal pathology. According to extensive use of composite resin, every effort on improving bonding strength and reducing microleakage between a tooth and composite resin has been continued. This study was conducted to determine the difference in microleakage in enamel and dentin treated with air-abrasion, acid etching and combination when restored with composite resin. Class V cavities were prepared on 30 premolars. The specimens were divided into following groups. group 1:air-abrasion+Scotchbond Multi-purpose group 4 :air-abrasion+All-Bond 2 group 2:acid etching+Scotchbond Multi-purpose group 5 :acid etching+All-Bond 2 group 3:combination+Scotchbond Multi-purpose group 6 :combination+All-Bond 2 #combination:air-abrasion + acid etching The specimens were filled with Z-100 after application of Scotchbond Multi-purpose and All-Bond 2. Thermocycling was conducted by alternately dipping the specimens in $5^{\circ}C$ and $55^{\circ}C$ water for 30 seconds 500 times. 1% methylene blue was applied and the specimens were left for 24 hours at $37^{\circ}C$. After washing out the dye, the tooth was sectioned buccolingually along the axis. The sectioned surface was observed with stereoscope for dye penetration. The author has measured the microleakage in teeth prepared with air-abrasion, acid ethching and combination to study the difference in microleakage following different methods of tooth surface treatment and has come to following results. 1. In comparing microleakage between groups, group 1 and 4 showed statistically significant difference from group 2, 3, 5 and 6(p<0.05). There was no significant difference among group 2, 3, 5, 6(p>0.05) nor between group 1 and 4(p>0.05). 2. In comparing microleakage among tooth surface treatment methods, Air-abrasion group showed significantly more microleakage than acid etching group and combination(airabrasion + acid etching) group(p<0.05). Combination(acid etching+air-abrasion)group tended to show lesser microleakage than acid etching group, but this was not statistically significant(p>0.05). 3. In comparing microleakage between bonding agents, there was no statistically significant difference between Scotch bond Multi-purpose and All-Bond 2(p>0.05).

  • PDF

Biogenic fabrication and characterization of silver nanoparticles using aqueous-ethanolic extract of lichen (Usnea longissima) and their antimicrobial activity

  • Siddiqi, Khwaja Salahuddin;Rashid, M.;Rahman, A.;Tajuddin, Tajuddin;Husen, Azamal;Rehman, Sumbul
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.328-336
    • /
    • 2018
  • Background: Biogenic fabrication of silver nanoparticles from naturally occurring biomaterials provides an alternative, eco-friendly and cost-effective means of obtaining nanoparticles. It is a favourite pursuit of all scientists and has gained popularity because it prevents the environment from pollution. Our main objective to take up this project is to fabricate silver nanoparticles from lichen, Usnea longissima and explore their properties. In the present study, we report a benign method of biosynthesis of silver nanoparticles from aqueous-ethanolic extract of Usnea longissima and their characterization by ultraviolet-visible (UV-vis), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) analyses. Silver nanoparticles thus obtained were tested for antimicrobial activity against gram positive bacteria and gram negative bacteria. Results: Formation of silver nanoparticles was confirmed by the appearance of an absorption band at 400 nm in the UV-vis spectrum of the colloidal solution containing both the nanoparticles and U. longissima extract. Poly(ethylene glycol) coated silver nanoparticles showed additional absorption peaks at 424 and 450 nm. FTIR spectrum showed the involvement of amines, usnic acids, phenols, aldehydes and ketones in the reduction of silver ions to silver nanoparticles. Morphological studies showed three types of nanoparticles with an abundance of spherical shaped silver nanoparticles of 9.40-11.23 nm. Their average hydrodynamic diameter is 437.1 nm. Results of in vitro antibacterial activity of silver nanoparticles against Staphylococcus aureus, Streptococcus mutans, Streptococcus pyrogenes, Streptococcus viridans, Corynebacterium xerosis, Corynebacterium diphtheriae (gram positive bacteria) and Escherichia coli, Klebsiella pneuomoniae and Pseudomonas aeruginosa (gram negative bacteria) showed that it was effective against tested bacterial strains. However, S. mutans, C. diphtheriae and P. aeruginosa were resistant to silver nanoparticles. Conclusion: Lichens are rarely exploited for the fabrication of silver nanoparticles. In the present work the lichen acts as reducing as well as capping agent. They can therefore, be used to synthesize metal nanoparticles and their size may be controlled by monitoring the concentration of extract and metal ions. Since they are antibacterial they may be used for the treatment of bacterial infections in man and animal. They can also be used in purification of water, in soaps and medicine. Their sustained release may be achieved by coating them with a suitable polymer. Silver nanoparticles fabricated from edible U. longissima are free from toxic chemicals and therefore they can be safely used in medicine and medical devices. These silver nanoparticles were stable for weeks therefore they can be stored for longer duration of time without decomposition.

Particle Size Effects of Devarda's Alloy on the Recovery of Nirate N Determined by the Steam Distillation Method (질산태 질소 정량을 위한 환원 증류법에서 Devarda's Alloy의 입자크기 및 함량이 미치는 영향)

  • Jung, Seok-Ho;Kwon, Hyun-Jae;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.387-393
    • /
    • 2011
  • We analyzed the particle size distributions of three commercially available Devarda's alloy (DA) products, tested the nitrate recoveries of each particle size category, and examined the amounts of DA required for 100% recovery by varying $NO_3$-N concentration from 0.5 to 10 mg. We observed that use of DA coarser than 200 mesh resulted in poor analytical recovery (<80%). While the tested alloys were considered to be fine enough (>90% of the particles were less than 100 mesh), the recovery dramatically declined from 80% to 10% in a high concentration range (4 to 10 mg N). Satisfactory recovery was obtained by increasing the amount of finer DA (less than 300 or 450 mesh). However, there was no quantitative relationship between the amount of fine DA and nitrate recovered. Generally, the amount of nitrate reduced per unit DA decreased as the recovery efficiency declined. These results suggest that a sufficient amount of DA must be determined based on particle size distribution, and that treatment of at least two levels of DA and comparison of the subsequent change in nitrate recovery is required for soils containing high levels of nitrate. In addition, further studies are encouraged to account for the observed stoichiometric dis-equivalence of recovered nitrate N per unit mass of DA.

Analysis of Bulking Agent Reduction Effect by using Previously Produced Compost (생산퇴비 재사용을 통한 수분조절재 절감효과 분석)

  • Lee, Min-Ho;Phonsuwan, Malinee;Moon, Byeong-Eun;Wang, Eun-Chul;Kim, Hyeon-Tae
    • Journal of agriculture & life science
    • /
    • v.51 no.4
    • /
    • pp.139-147
    • /
    • 2017
  • This study was carried out in order to reduce the amount of sawdust for recycling the generated manure from livestock farms, and to investigate the effects on the reducing usage of sawdust and quality of produced compost. To do this, a cylindrical horizontal composting device were used in the experiments and compost was analyzed for judging produce compost quality. The experiment was carried out separately under different cases of operational control conditions. The first case was produced by using sawdust and pig manure mixture(Test-1); the second case was produced by using sawdust, pig manure and the previously produced compost(Test-2). In the second case, Except for some heavy metal content, The water content and C/N ratio were found to be suitable for fertilizer process specification of the RDA(Rural Development Administration) and it was found to reduce the sawdust 1.25tons usage.

Inhibitory effects of Sargassum horneri extract against endoplasmic reticulum stress in HepG2 cells (괭생이 모자반 추출물의 소포체 스트레스 억제 효능)

  • Park, Sora;Thomas, Shalom Sara;Cha, Youn-Soo;Kim, Kyung-Ah
    • Journal of Nutrition and Health
    • /
    • v.53 no.6
    • /
    • pp.583-595
    • /
    • 2020
  • Purpose: This study examined the effects of Sargassum horneri extracts on palmitic acid (PA)-induced endoplasmic reticulum (ER) stress in HepG2 cells. Methods: HepG2 cells were treated with varying concentrations of S. horneri extract or PA, and the cell viability was measured by water soluble tetrazolium salts analysis. The effective induction of ER stress and the effects of S. horneri were investigated through an examination of the ER stress-related genes, such as activating transcription factor 4 (ATF4), X-box binding protein (XBP1s), C/EBP homologous protein (CHOP), and 78-kDa glucose-regulated protein (GRP78) by quantitative reverse transcription polymerase chain reaction. The expression and activation levels of unfolded protein response (UPR) associated proteins, such as inositol-requiring enzyme-1α (IRE1α), eukaryotic translation initiation factor 2 alpha submit (eIF2α), and CHOP were examined by western blot analysis. Results: The treatment with PA increased the expression of UPR associated genes significantly and induced ER stress in a 12-hour treatment. Subsequent treatment with S. horneri reduced mRNA expression of ATF4, GRP78, and XBP1s. In addition, the protein levels of phosphate (p)-IRE1α, p-elF2α, and CHOP were also reduced by a treatment with S. horneri. An analysis of sirtuin (SIRT) mRNA expression in the S. horneri and PA-treated HepG2 cells showed that S. horneri increased the levels of SIRT2, SIRT6, and SIRT7, which indicates a possible role in reducing the expression of ER stress-related genes. Conclusion: These data indicate that S. horneri can exert an inhibitory effect on ER stress caused by PA and highlight its potential as an agent for managing various ER stress-related diseases.

A Study on the Adhesion Properties of Polymer-Cement Composites for Repairing Cracks in RC Structures (RC 구조물의 균열 보수용 폴리머 시멘트 복합체의 접착특성에 관한 연구)

  • Jo, Young-Kug;Hong, Dae-Won;Kwon, Woo-Chan;Kim, Wan-Ki
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2022
  • The purpose of this study is to evaluate the adhesion properties of polymer cement composites for crack repair of an RC structure. Polymer cement composites are manufactured from cement, three types of polymers and silica fume, and the mixture is designed by adjusting the water cement ratio and AE reducing agent so that the viscosity target of the polymer cement composites is 700mPa·s or less. According to the test results, the Type-A adhesion in tension of the polymer cement composite exceeded the adhesion standard of 1.0MPa of the polymer finishing material, and furthermore, depending on the type of polymer, the adhesion in tension was highest for SAE, followed in descending order by EVA, and SBR. In addition, the adhesion in tension of Type-B is up to 1/4.5 lower than that of Type-A, but the incorporation of silica fume shows a significant improvement in terms of adhesion in tension. Based on this study, the basic mixing design of the polymer cement composites required for viscosity and adhesive performance required for crack repair of the RC structure was completed. It could be proposed as an optimal mixing design under conditions for intermixing polymer type EVA, SAE, and P/C 80%-100%.

Removal of Nitrogen Oxides Using Hydrocarbon Selective Catalytic Reduction Coupled with Plasma (플라즈마가 결합된 탄화수소 선택적 촉매환원 공정에서 질소산화물(NOx)의 저감)

  • Ihm, Tae Heon;Jo, Jin Oh;Hyun, Young Jin;Mok, Young Sun
    • Applied Chemistry for Engineering
    • /
    • v.27 no.1
    • /
    • pp.92-100
    • /
    • 2016
  • Low-temperature conversion of nitrogen oxides using plasma-assisted hydrocarbon selective catalytic reduction of (HC-SCR) was investigated. Plasma was created in the catalyst-packed bed so that it could directly interact with the catalyst. The effect of the reaction temperature, the shape of catalyst, the concentration of n-heptane as a reducing agent, the oxygen content, the water vapor content and the energy density on $NO_x$ removal was examined. $NO_x$ conversion efficiencies achieved with the plasma-catalytic hybrid process at a temperature of $250^{\circ}C$ and an specific energy input (SIE) of $42J\;L^{-1}$ were 83% and 69% for one-dimensional Ag catalyst ($Ag\;(nanowire)/{\gamma}-Al_2O_3$) and spherical Ag catalyst ($Ag\;(sphere)/{\gamma}-Al_2O_3$), respectively, whereas that obtained with the catalyst-alone was considerably lower (about 30%) even with $Ag\;(nanowire)/{\gamma}-Al_2O_3$ under the same condition. The enhanced catalytic activity towards $NO_x$ conversion in the presence of plasma can be explained by the formation of more reactive $NO_2$ species and partially oxidized hydrocarbon intermediates from the oxidation of NO and n-heptane under plasma discharge. Increasing the SIE tended to improve $NO_x$ conversion efficiency, and so did the increase in the n-heptane concentration; however, a further increase in the n-heptane concentration beyond $C_1/NO_x$ ratio of 5 did not improve the $NO_x$ conversion efficiency any more. The increase in the humidity affected negatively the $NO_x$ conversion efficiency, resulting in lowering the $NO_x$ conversion efficiency at the higher water vapor content, because water molecules competed with $NO_x$ species for the same active site. The $NO_x$ conversion efficiency increased with increasing the oxygen content from 3 to 15%, in particular at low SIE values, because the formation of $NO_2$ and partially oxidized hydrocarbon intermediates was facilitated.

Bacteriocidal Effects of Ultraviolet Irradiation for Reducing Bovine Mastitis Derived from Environmental Contamination (우분뇨 유래 젖소 유방염 저감을 위한 자외선 조사 살균의 효과 규명)

  • Kim, Dong-Hyeok;Lim, Jung-Ju;Lee, Jin-Ju;Jang, Hong-Hee;Jang, Dong-Il;Lee, Seung-Joo;Lee, Hu-Jang;Min, Won-Gi;Kwon, Sun-Hong;Kim, Sang-Hun;Oh, Kwon-Young;Kim, Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.435-440
    • /
    • 2008
  • Bovine mastitis is an important disease causing serious economic loss in dairy production and food poison in public health. The major causative agents of bovine mastitis include Escherichia coli (E. coli), Streptococcus agalactiae (S. agalactiae), Staphylococcus aureus (S. aureus). These bacteria were found in milk and environmental condition such as feces, water, soil and so on. Recently, many cases of mastitis are derived from environmental contamination of micro-organisms, which important factors for the spread of this disease in farm. Ultraviolet irradiation (UV) has been used as disinfection for waste and water in clinical and industrial facilities. Moreover the UV irradiation has been used as useful bactericidal agents to remove bacterial biofilms in environmental condition. In this study, we determined the bacterial replication in different percentage of water content (PWC) in sterilized saw dust and feces complexes from farm, and results showed that slightly decreased growth pattern of E. coli and S. agalactiae but increased growth pattern of S. aureus in various PWC (200, 400 and 600%) until 144 h incubation. In the bacteriocidal effect of UV irradiation to bacteria in saw dust and feces complex, the results showed that bacteriocidal effect was depended on the UV irradiation time, irradiation distance and PWC. Especially the antibacterial activity of UV irratiation is stronger in low PWC (50%), long time irradiation (50 sec), and short distance (5 cm) than other condition of this study. Furthermore UV irradiation with stirring showed increased the bactericidal effect compared without stirring. These results suggested that bovine mastitis causing agents may survive long time in environmental condition especially saw dust and feces complexes in farm and can cause a various disease including mastitis. Moreover, these data can be used as basis for application and development of UV disinfection to control of bovine mastitis from environmental contaminated bacteria in dairy farm.

Changes in the in vitro Antioxidant and Antithrombosis Activities of Salicornia europaea According to Harvest Time (수확시기에 따른 함초의 항산화 및 항혈전 활성의 변화)

  • Kim, Mi-Sun;Lee, Jung-Nam;Seong, Ha-Jung;Kim, Deuk Hoi;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.26 no.9
    • /
    • pp.1033-1040
    • /
    • 2016
  • In Korea, the aerial parts of the halophyte Salicornia europaea, known as hamcho, are used in salads in April–June and in oriental medicine in September–October In this study, with the aim of developing functional foods to aid blood circulation, hot water extract (HWE) and ethanol extract (EE) were prepared using hamcho harvested from the fields of Shinan, Jeonnam, Korea on 5th April (HWE-04, EE-04), 5th July (HWE-06, EE-06), 5th August (HWE-08, EE-08), 5th September (HWE-09, EE-09), and 5th October (HWE-10, EE-10), and their antioxidant and antithrombosis activities were evaluated. Among the HWEs, HWE-10 showed the highest concentration of total polyphenols and total flavonoids (22.4 and 17.6 mg/ml, respectively), and EE-09 had the highest concentration among the EEs (20.1 and 19.3 mg/ml, respectively). Among the HWEs and EEs, HWE-08 and EE-08 had the highest total sugar and reducing sugar content. In the antioxidation assay, HWE-10 and EE-09 showed strong reducing power, as well as DPPH, ABTS, and nitrite scavenging activities. The calculated RC50s of EE-09 against DPPH, ABTS, and nitrite were 578, 277, and 68.8 μg/ml, respectively. The antithrombosis activity assay revealed that HWE-04, HWE-06, EE-04, and EE-06 had anticoagulation activity against coagulation factors and that HWE-08, HWE-09, EE-08, and EE-09 expressed strong thrombin inhibitory activity, which was comparable to the antithrombosis activity of aspirin. In addition, EE-06 and HWE-08 exhibited strong aggregation inhibitory activities against human platelets. The results suggest that extract from hamcho harvested in particular periods and prepared using a defined solvent has strong potential as a novel food ingredient and an antioxidant and antithrombosis agent.