DOI QR코드

DOI QR Code

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and Research Center for Energy Conversion & Storage, Seoul National University (SNU)) ;
  • Lee, Kug-Seung (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and Research Center for Energy Conversion & Storage, Seoul National University (SNU)) ;
  • Jeon, Tae-Yeol (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and Research Center for Energy Conversion & Storage, Seoul National University (SNU)) ;
  • Park, Hee-Young (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and Research Center for Energy Conversion & Storage, Seoul National University (SNU)) ;
  • Jung, Nam-Gee (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and Research Center for Energy Conversion & Storage, Seoul National University (SNU)) ;
  • Chung, Young-Hoon (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and Research Center for Energy Conversion & Storage, Seoul National University (SNU)) ;
  • Sung, Yung-Eun (World Class University (WCU) program of Chemical Convergence for Energy & Environment (C2E2), School of Chemical and Biological Engineering, College of Engineering and Research Center for Energy Conversion & Storage, Seoul National University (SNU))
  • Received : 2010.08.06
  • Accepted : 2010.08.16
  • Published : 2010.09.30

Abstract

Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

Keywords

References

  1. P.N. Ross, K. Kinoshita, A.J. Scarpellino, and P.J. Stonehart, J. Electroanal. Chem., 59, 177 (1975). https://doi.org/10.1016/S0022-0728(75)80032-5
  2. P.N. Ross, K. Kinoshita, A.J. Scarpellino, and P.J. Stonehart, J. Electroanal. Chem., 63, 97 (1975). https://doi.org/10.1016/S0022-0728(75)80130-6
  3. H.A. Gasteiger, N.M. Markovic, and P.N. Ross, JR., J. Phys. Chem., 99, 8290 (1995). https://doi.org/10.1021/j100020a063
  4. K. Wang, H.A. Gasteiger, N.M. Markovic, and P.N. Ross, Electrochim. Acta. 41, 2587 (1996). https://doi.org/10.1016/0013-4686(96)00079-5
  5. M. Watanabe and S. Motoo, J. Electroanal. Chem., 60, 275 (1975). https://doi.org/10.1016/S0022-0728(75)80262-2
  6. C. Lu and R.I. Masel, J. Phys. Chem. B, 105, 9793 (2001). https://doi.org/10.1021/jp011684f
  7. G. Samjeske, X.Y. Xiao, and H. Baltruschat, Langmuir, 18, 4659 (2002). https://doi.org/10.1021/la011308m
  8. Y.Y. Tong, H.S. Kim, P.K. Babu, P. Waszczuk, A. Wieckowski, and E. Oldfield, J. Am. Chem. Soc., 124, 468 (2002). https://doi.org/10.1021/ja011729q
  9. T. Iwasita, F.C. Nart, and W. Vielstich, Bunsenges Phys. Chem.Chem. Phys, 94, 1030 (1990). https://doi.org/10.1002/bbpc.19900940930
  10. M. Krausa and W. Vielstich, J. Electroanal. Chem., 379, 307 (1994). https://doi.org/10.1016/0022-0728(94)87152-3
  11. T. Iwasita, H. Hoster, A. John-Anacker, W.F. Lin, and W. Vielstich, Langmuir, 16, 522 (2000). https://doi.org/10.1021/la990594n
  12. A.A. El-Shafei, R. Hoyer, L.A. Kibler, and D.M. Kolb, J. Electrochem. Soc., 151, 141 (2004).
  13. J.C. Davies, B.E. Hayden, and D.J. Pegg, Surf. Sci., 467, 118 (2000). https://doi.org/10.1016/S0039-6028(00)00743-3
  14. C. Lu, C. Rice, R.I. Masel, P.K. Babu, P. Waszczuk, and H.S. Kim, J. Phys. Chem. B, 106, 9581 (2002). https://doi.org/10.1021/jp020169u
  15. T. Frelink, W. Visscher, A.P. Cox, and J.A.R. Vanveen, Electrochim. Acta, 40, 1537 (1995). https://doi.org/10.1016/0013-4686(95)00034-C
  16. C. Roth, N. Benker, T. Buhrmester, M. Mazurek, M. Loster, and H. Fuess, J. Am. Chem. Soc., 127, 14607 (2005). https://doi.org/10.1021/ja050139f
  17. P. Waszczuk, G.Q. Lu, A. Wieckowski, C. Lu, C. Rice, and R.I. Masel, Electrochim. Acta, 47, 3637 (2002). https://doi.org/10.1016/S0013-4686(02)00334-1
  18. D. Wang, L. Zhuang, and J. Lu, J. Phys. Chem. C, 111, 16416 (2007). https://doi.org/10.1021/jp073062l
  19. E. Antolini and F. Cardellini, J. Alloys Compd., 315, 118 (2001). https://doi.org/10.1016/S0925-8388(00)01260-3
  20. E. Antolini, F. Cardellini, L. Giorgi, and E.J. Passalacqua, J. Mater. Sci. Lett., 19, 2099 (2000). https://doi.org/10.1023/A:1026702121134
  21. Y. Liang, J. Li, Q.- C. Xu, R.-Z. Hu, J.-D. Lin, and D.-W. Liao, J. Alloys Compd., 465, 296 (2008). https://doi.org/10.1016/j.jallcom.2007.10.075
  22. S. Trasatti and G.J. Buzzanca, J. Electroanal. Chem., 29, A1 (1971). https://doi.org/10.1016/S0022-0728(71)80111-0
  23. D.R.M. Godoi, J. Perez, and H.M. Villullas, J. Phys. Chem. C, 113, 8518 (2009). https://doi.org/10.1021/jp8108804
  24. M. Watanabe and S. Motoo, J. Electroanal. Chem., 60, 267 (1975). https://doi.org/10.1016/S0022-0728(75)80261-0
  25. Z. Liu, X.Y. Ling, X. Su, and J.Y. Lee, J. Phys. Chem. B, 108, 8234 (2004). https://doi.org/10.1021/jp049422b
  26. A. Hamnett, Catalysis Today, 38, 445 (1997). https://doi.org/10.1016/S0920-5861(97)00054-0
  27. M. E. Labib, Colloids and Surfaces, 29, 293 (1988). https://doi.org/10.1016/0166-6622(88)80124-0

Cited by

  1. Effect of Electrochemical Reduction of Ruthenium Black Cathode Catalyst on the Performance of Polymer Electrolyte Membrane Fuel Cells vol.14, pp.2, 2011, https://doi.org/10.5229/JKES.2011.14.2.110
  2. Improvement of energy conversion efficiency and power generation in direct borohydride-hydrogen peroxide fuel cell: The effect of Ni-M core-shell nanoparticles (M = Pt, Pd, Ru)/Multiwalled Carbon Nanotubes on the cell performance vol.370, 2017, https://doi.org/10.1016/j.jpowsour.2017.10.017
  3. Highly Alloyed PtRu Nanoparticles Confined in Porous Carbon Structure as a Durable Electrocatalyst for Methanol Oxidation vol.6, pp.21, 2014, https://doi.org/10.1021/am504821h
  4. Anode electrode with carbon buffer layer for improving methanol oxidation reaction in direct methanol fuel cell vol.290, 2014, https://doi.org/10.1016/j.apsusc.2013.11.059
  5. Pt–Ni alloy nanoparticles supported on CNF as catalyst for direct ethanol fuel cells vol.12, pp.3, 2012, https://doi.org/10.1016/j.cap.2011.11.020