• Title/Summary/Keyword: Water pollutants

Search Result 1,452, Processing Time 0.03 seconds

Evaluation of treatment efficiencies of pollutants in daecheong lake juwon stream constructed wetlands (대청호 주원천 인공습지의 오염물질 정화효율 평가)

  • Kim, Tae-Hun;Sung, Ki-Eun;Ha, Duk-Ho;Kim, Dong-Hee;Heo, Soon-Uk;Choi, Chung-Sik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.211-222
    • /
    • 2015
  • This study focused on evaluating the efficiency of the removal of non-point source pollution by Daecheong Lake Juwon Stream constructed wetlands. The constructed wetland system is a surface flow type designed in the year 2007 for purifying eutrophic water of Daecheong Lake Juwon Stream. The value of conductivity, suspended solids(SS), chemical oxygen demand using a potassium permanganate($COD_{Mn}$), five-day biochemical oxygen demand($BOD_5$), total nitrogen(T-N), total phosphorous(T-P), and pH in inflow averaged 220.2, 2.46, 3.33, 1.34, 2.00, 0.04 mg/L and 7.24, respectively and in outflow averaged 227.9, 1.12, 3.34, 0.87, 1.16, 0.02 mg/L and 7.45, respectively. The average removal efficiency of constructed wetlands was 30 % for SS, 22 % for $BOD_5$, 45 % for T-N and 31 % for T-P. The removal rates of SS, $BOD_5$ and T-N in the spring, summer and autumn were higher than those in winter. The removal rate of T-P was not significant different in all seasons. The amounts of pollutants removal in the constructed wetlands were higher in the order of $3^{rd}$ < $2^{nd}$ < $1^{st}$ wetland for SS and T-P, $2^{nd}$ < $3^{rd}$ < $1^{st}$ wetland for $BOD_5$ and T-N. Therefore, our findings suggest that the constructed wetlands could well treat the eutrophic Daecheong Lake Juwon Stream waters.

Generation and Discharge Characteristics of Non-point Pollutants from Farmlands of Small Watershed for Nak-dong River (낙동강 소유역 경지에서의 비점오염원 물질 발생 및 배출 특성)

  • Jung, Yong-Jun;Nam, Kwang-Hyun;Min, Kyung-Sok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.4
    • /
    • pp.333-338
    • /
    • 2004
  • This study was carried out to investigate the generation and discharge characteristics of non-point pollutants from farmlands in Nak-dong river basin. Annual unit generation load of nitrogen and phosphorus by fertilization in the test paddy field was almost similar to those calculated by the fertilization standards of district agricultural technology center, but it was extremely higher in case of the test dry field. By comparing annual total generation load of nutrients from fertilization to the data of fertilizer marketing, the accurate forecasting of generation load of pollutants was achieved by marketing data. The annual total discharge ratio of nutrients through infiltration and overflow from the farmland of the test paddy field were 9.5% and 1.1%, respectively, and those in the test dry field were 22.0% and 0.1%, respectively. The monthly discharge load of nutrients were shown the highest proportioned to the discharge load from lands, but it showed higher in phosphorus, which was caused by the intermittent discharge of phosphorus accumulated in drainage.

Characteristics of Non-Point Pollutants Discharge in a Small Rural Watershed (농촌 소유역에서의 비점오염물질 유출 특성 - 충남 공주시 정안면 고성리 지역을 대상으로 -)

  • Kim, Jin-Ho;Han, Kuk-Heon;Ryu, Jong-Su;Lim, Hyuk-Jin;Lee, Kyung-Do;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.552-556
    • /
    • 2005
  • This study was conducted to identify the characteristics of non-point pollutants discharge in a small Rural watershed. For this purpose, the typical rural area in Gongju city was selected as a research site. Water quality and water quantity data in the stream and the precipitation of the watershed were analyzed periodically from May 1 to August 31 in 2005. Also, pollutant loads were estimated using these data. As a result, the mean concentrations of BOD, TN and TP in the stream were 3.16, 3.20, 0.236 mg/L rainy season and 0.93, 2.75, 0.058 mg/L in normal survey season respectively. The estimation of non-point pollutants discharge loads were shown that BOD was 5,154.2kg, T-N was 9,164.7kg, T-P was 308.4kg, and SS was 117,163.2kg from July to August. That means above of 90% of non-point pollutants discharge was occurred in rainy season.

  • PDF

Simultaneous Analysis of Pesticide Priority Pollutants in Water Samples (수질 시료 중의 Pesticide Priority Pollutants 동시분석에 관한 연구)

  • Kim Kye-Young;Kim Chong-Hyeak;Lee Sueg-Geun
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.6
    • /
    • pp.590-598
    • /
    • 1993
  • The simultaneous analysis of samples, 16 organic pesticides in water among 129 priority pollutants listed by EPA, was performed by GC-ECD (electron capture detector) and GC/MS-SIM (selected ion monitoring). Two extraction procedures, liquid-liquid extraction (LLE) and solid-phase extraction (SPE), were studied as an extraction and concentration method. Accuracy and precision of the methods were measured by the calculation of mean recovery and mean relative standard deviation. Finally, the detection limits, the experimental limitations, and prospects were discussed.

  • PDF

Assessing pollutants' migration through saturated soil column

  • Smita Bhushan Patil;Hemant Sharad Chore;Vishwas Abhimanyu Sawant
    • Membrane and Water Treatment
    • /
    • v.14 no.2
    • /
    • pp.95-106
    • /
    • 2023
  • In the developing country like India, groundwater is the main sources for household, irrigation and industrial use. Its contamination poses hydro-geological and environmental concern. The hazardous waste sites such as landfills can lead to contamination of ground water. The contaminants existing at such sites can eventually find ingress down through the soil and into the groundwater in case of leakage. It is necessary to understand the process of migration of pollutants through sub-surface porous medium for avoiding health risks. On this backdrop, the present paper investigates the behavior of pollutants' migration through porous media. The laboratory experiments were carried out on a soil-column model that represents porous media. Two different types of soils (standard sand and red soil) were considered as the media. Further, two different solutes, i.e., non-reactive and reactive, were used. The experimental results are simulated through numerical modeling. The percentage variation in the experimental and numerical results is found to be in the range of 0.75- 11.23 % and 0.84 - 1.26% in case of standard sand and red soil, respectively. While a close agreement is observed in most of the breakthrough curves obtained experimentally and numerically, good agreement is seen in either result in one case.

Evaluation of biodegradability according to bait type for crab pots (꽃게 통발용 미끼의 형태에 대한 생분해도 평가)

  • Jeong, Byung-Gon;Chang, Ho-Young;Koo, Jae-Geun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.44 no.1
    • /
    • pp.20-30
    • /
    • 2008
  • In order to evaluate the biodegradability of bait used in the pot for swimming crab, water tank experiments were conducted. Mackerel is the most commonly used natural form of bait to catch the swimming crabs, and therefore was used in this experiment for the biodegradability according to the manufacturing process of the bait. From the biodegradability test on chemical oxygen demand(COD), total nitrogen(T - N), total phosphorus(T - P), ammoniac nitrogen, nitrite nitrogen and nitrate nitrogen per unit weight of the bait based on the production rate and the accumulated amount of pollutants, it was concluded that the smaller the size of the mackerel pieces, the higher the production rate and accumulated amount of organic matter and nutrients which was unfavorable to water pollution. The amount of pollutants released from the intestine of the tuna was similar with that from the whole mackerel. For the operation period of 111 days, the accumulated concentrations of tested pollutants from the tuna which were 67.3 mgCOD/g d, 86.4 mgT N/g d, 3.1 mgT - P/g d, were almost half comparing with those from the mackerel which were 65.7 - 94.4 mgCOD/g d, 83.8 - 109.4 mgT - N/g d, 3.1 - 5.2 mgT - P/g d. The amount of pollutants released from the intestine of the tuna was slightly less than that from the mackerel that was cut into 8 pieces. but more than that from the mackerel which was not cut into pieces. Therefore, it can be concluded that the key factor in determining water pollution potential is not the kind of bait, but the processing or preparation method used.

Pollutants Release from Sediments in Estuarine Reservoir (간척담수호 저층퇴적물의 오염물질 용출특성)

  • Jung, Kwang Wook;Yoon, Chun Gyeong;Lee, In Ho;Lee, Seung Il;Kang, Su Man;Ham, Jong Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Sediment pollutants have been considered an important source for the eutrophication of estuarine reservoir. In this study, the effects of pollutants released from bottom sediment to water column were investigated. Sediment samples were collected each two station from Namyang and Sukmoon estuarine reservoirs in August 2013. The fractionation result of sediment phosphorus indicated that Adsorbed-P ($36.7{\pm}8.84%$) and Nonapatite-P ($29.3{\pm}12.50%$) are the two dominant phosphorus groups in the sediments. For sediment release test, eight sets of acrylic chamber (0.3 m $diameter{\times}1m$ high, with 0.15 m sediment depth) were used with aerobic and anaerobic environment. Under anaerobic conditions, rates of $NH_4-N$ release from the sediments were highly variable, with final concentrations of $NH_4-N$ in the overlying water varying from between about 0.69~1.04 in Namyang and 2.58~4.23 mg/L in Sukmoon reservoir. The $NH_4-N$ release was active at the upstream around the confluence of tributary compared to downstream near the embankment. The $PO_4-P$ release was more obvious than $NH_4-N$ in anaerobic condition. The final $PO_4-P$ concentrations were approximately from two-fold to eight-fold higher than initial concentration. In terms of reservoir water quality management, not only tributary pollutants but also sediment nutrient loading is necessary to consider the water quality contribution.

Treatment Efficiency of Non-Point Source Pollutants Using Modified Filtration System (개선된 여과형 시설의 비점오염물질 처리효율 평가)

  • Kang, Hee-Man;Choi, Ji-Yon;Kim, Lee-Hyung;Bae, Woo-Keun
    • Journal of Wetlands Research
    • /
    • v.13 no.2
    • /
    • pp.161-169
    • /
    • 2011
  • The objective of this study was to evaluate the efficiency of a modified filtration system treating non-point source (NPS) pollutants. The developed Best Management Practice (BMP) technology was designed based on the geographical and climatic characteristics of the site. A lab-scale test experiment was conducted using three different hydraulic loading rates representing the first flush flow, average flow and overflow conditions during a rainfall event. Water quality analysis was performed on the water samples taken at the inflow, outflow and infiltration during the test experiment of the lab-scale BMP. Also, the water and mass balance at different hydraulic loading rates was determined. Results from the lab-scale test experiment showed that the lab-scale BMP had a high removal efficiency of 80-90% for all NPS pollutants. The overflow test condition obtained the lowest removal efficiency among the hydraulic loading rates because it gave less opportunity for the pollutants to be filtered and retained inside system. The infiltration ratio was approximately 1 % of the inflow and outflow. Increasing the infiltration ratio requires technical approach of soil amendment where the BMP is installed.

Seasonals Pollutant Outflow Analysis in the Watershed of Soyang Lake by using Multivariate Analysis (다변량 분석을 이용한 소양호 유역의 계절별 오염물질 유출 해석)

  • Park, Soo-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3726-3734
    • /
    • 2012
  • This study evaluated the behavior of pollutants based on the seasonal change by selecting the branch river's factors that influence the outflow of pollutants in Soyang lake basin. The analysis method was the factor analysis that classified the factors of the drainage area influencing the outflow of pollutants, and evaluated selected representative factors. As a result of the study, SS and T-P factors should be classified as similar factors to the storm water runoff, and the improvement of water must be strived through managing source of pollution at the time of no rain. Second, as the result of the influence from the factors, spring and winter seasons usually exert 36% influence and summer and fall exert over 90% significant influence that the improvement of water through managing source of water seems possible. At last, the prediction about delivery pollution load considering the outflow characteristic of pollutants at the drainage area based on seasonal change by regarding selected factors as independent variables is possible.

Status and its Improvement of Comprehensive Water Quality Evaluation (물환경 종합평가의 현황과 선진화 방안)

  • Choi, Ji Yong;Lee, Jee Hyun;Lee, Jae Kwan;Kim, Chang Su
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.748-756
    • /
    • 2006
  • Accurate and timely information on status and trends in the environment is necessary to shape sound water quality management policy and to implement water quality improvement programs efficiently. One of the most effective ways to communicate information on water quality trends to policy-makers, scientists, and the general public is with comprehensive water quality indices. The derivation and structure of a water quality index (WQI) for the classification of surface water quality is discussed. The WQI generally developed through the selection, transformation and weighting of determinants with rating curves based on legal standards and quality directives or guidelines. The representative pollutants should be included in the index, and the relationship between the quantity of these pollutants in the water and the resulting quality of the water should be based on scientific results. The WQI be simply and meaningfully formulated that nonscientifically trained users can easily become familiar with the framework of the system and use the output data to evaluate their own pollution problems.