DOI QR코드

DOI QR Code

Treatment Efficiency of Non-Point Source Pollutants Using Modified Filtration System

개선된 여과형 시설의 비점오염물질 처리효율 평가

  • 강희만 (한국도로공사 도로교통연구원) ;
  • 최지연 (공주대학교 건설환경공학부) ;
  • 김이형 (공주대학교 건설환경공학부) ;
  • 배우근 (한양대학교 건설환경공학과)
  • Received : 2011.04.17
  • Accepted : 2011.07.04
  • Published : 2011.08.31

Abstract

The objective of this study was to evaluate the efficiency of a modified filtration system treating non-point source (NPS) pollutants. The developed Best Management Practice (BMP) technology was designed based on the geographical and climatic characteristics of the site. A lab-scale test experiment was conducted using three different hydraulic loading rates representing the first flush flow, average flow and overflow conditions during a rainfall event. Water quality analysis was performed on the water samples taken at the inflow, outflow and infiltration during the test experiment of the lab-scale BMP. Also, the water and mass balance at different hydraulic loading rates was determined. Results from the lab-scale test experiment showed that the lab-scale BMP had a high removal efficiency of 80-90% for all NPS pollutants. The overflow test condition obtained the lowest removal efficiency among the hydraulic loading rates because it gave less opportunity for the pollutants to be filtered and retained inside system. The infiltration ratio was approximately 1 % of the inflow and outflow. Increasing the infiltration ratio requires technical approach of soil amendment where the BMP is installed.

본 연구는 여과와 침투기작을 이용한 개선된 여과형 시설의 비점오염물질 처리효율을 평가하고자 수행되었다. 저감시설은 지리학적 기후학적인 인자를 고려하여 기존의 저감시설의 단점을 보완하여 설계되었다. 저감시설의 처리효율 평가는 실험실 규모로 수행되었으며, 3가지 유형의 유속[초기강우(120 mL/min), 일반적인 강우(242 mL/min), 집중호우(500 mL/min)]을 적용하여 실험을 진행하였고, 이를 통하여 수질 분석 및 물수지를 산정하였다. 실험결과, 저감시설의 입자상 물질 제거 효율은 90%이상으로 높게 분석되었다. 3가지의 유속변화 실험 중, 집중호우의 경우에서 11~91% 범위로 낮은 제거효율을 보였는데, 이는 다른 유속에 비해 짧은 체류시간을 갖기 때문으로 판단된다. 또한 저감시설의 물수지 산정결과 침투량은 유출량의 약 1%에 불과하여 향후 저감시설 설계 시, 침투를 증가시키기 위해서 시설하부의 토양치환 등을 통한 침투량 및 저류량을 증가시킬 수 있는 기술적 접근이 필요하며, 이는 오염물질의 저감에 크게 기여할 것으로 판단된다.

Keywords

References

  1. 김이형, 21세기 친환경 건설을 위한 Low Impact Development(LID) 기술, 물과 미래, 41(6), 47-57, 2008.
  2. 방기웅, 이준호, 최창수, 이상일, 필터 분리기를 이용한 여재별 도로퇴적물의 오염물질 제거효율 비교, 대한환경공학회지, 29(3), 332-340, 2007.
  3. 환경부, 관계부처합동 [물관리 종합대책]의 추진 강화를 위한 4대강 비점오염원관리 대책, 2004.
  4. 환경부, 비점오염저감시설의 설치 및 관리 운영 매뉴얼, 2008.
  5. Bell, W., L. Stokes, L. J. Gavan., T. N. Nguyen, Assessment of the Pollutant Removal Efficiencies of Delaware Sand Filter BMPs, Department of Transportation and Environmental Services. Alexandria, VA., 140, 1995.
  6. California Department of Transportaion (Caltrans), Infiltration Trenches Design Guidance, CTSW-TM-07-172-05, 2009.
  7. City of Austin, Evaluation of nonpoint source controls an EPA/TNRCC section 319 grant report, Water Quality Report COA-ERM-97-04, 1997.
  8. Environmental Resource Management Division, Removal Efficiencies of stormwater control structures, Final Report, Austin, TX, 36, 1999.
  9. Hatt B.E., Fletcher T.D., Deletic A., Treatment performance of gravel filter media: Implications for design and application of stormwater infiltration systems, Water research, 41, 2513-2524, 2007. https://doi.org/10.1016/j.watres.2007.03.014
  10. Horner R.R., and Horner C.R., Design, Construction, and Evaluation of a Sand Filter Stormwater Treatment System. Part II. Performance monitoring, Report to Alaska Marine Lines, Seattle WA, 1995.
  11. Siriwardene N.R., Deletic A., Fletcher T.D., Clogging of stormwater gravel infiltration systems and filters: Insights from a laboratory study, Water research, 41, 1433-1440, 2007. https://doi.org/10.1016/j.watres.2006.12.040
  12. U.S. Environmental Protection Agency (U.S. EPA), Urbanization of Streams: Studies of Hydrologic Impacts, EPA 841-R-97-009, 1997.
  13. U.S. EPA, Storm Water Technology Fact Sheet, Sand Filters, EPA 832-F-99-007, 1999.
  14. U.S. EPA, National Pollutant Removal Performance Database for Stormwater Treatment Practices 2nd Edition, 2000.