• 제목/요약/키워드: Water permeation

검색결과 479건 처리시간 0.024초

상전환법에 의한 다양한 기공크기를 갖는 폴리비닐리덴플루오라이드 막의 제조와 수계 및 비수계 용액 내에서의 막 성능 (Formation of Poly(vinylidene difluoride) Membranes with Various Pore Sizes by a Phase Inversion Process and Membrane Performance of Aqueous and Non-aqueous Solution System)

  • 이규호;김인철
    • 멤브레인
    • /
    • 제15권1호
    • /
    • pp.22-33
    • /
    • 2005
  • 비대칭 폴리비닐리덴플루오라이드(PVDF) 막을 상전환법으로 제조하였다. 도포용액은 PVDF를 용매인 N-ethyl-2-pyrrolidone (NMP)와 비용매인 1,4-dioxane, diethyleneglycol dimethyl ether (DGDE), acetone, (equation omitted)-butyrolactone(GBL)의 혼합용매에 녹여서 제조한다. 여러 첨가제가 도포용액 특성, 투과특성과 막 구조에 미치는 영향을 조사하였다. 응고제인 물과 1,4-dioxane, DGDE, acetone과의 상용성이 NMP보다 낮아서 기공크기가 작아진다. 첨가제의 양을 조절하여 기공크기를 변화시켰다. 혼합용매(수계 및 비수계)가 막의 투과성능에 미치는 영향을 살펴보았다. 용액점도뿐만 아니라 표면장력도 용매 투과특성에 영향을 끼침을 알 수 있었다.

실내모형시험을 통한 OPC와 친환경 MIS 그라우트의 지반 침투성능 분석 (Analysis of Permeation Efficiency in Soil for OPC and Non-Pollution MIS Grouts by Laboratory Model Test)

  • 안정호;임희대;최동남;송영수
    • 자원환경지질
    • /
    • 제45권3호
    • /
    • pp.307-315
    • /
    • 2012
  • 본 연구에서는 보통 포틀랜드 시멘트 OPC(Ordinary Portland Cement)와 MIS(Micro-Injection Process System) 공법에서 사용하고 있는 마이크로 시멘트의 지반 침투성능을 평가하기 위해 실내모형시험을 수행하였다. 이를 위해 그라우트 주입을 일정한 방법으로 재현할 수 있는 가압침투주입장치를 제작하였으며 공시체 제작방법을 마련하였다. 물시멘트비를 5:1에서 1:1까지 변화하여 주입시험을 수행한 결과 물시멘트비가 증가함에 따라 침투성능이 선형적으로 증가하였으며 주입성능을 비교하면 상대적으로 비표면적이 큰 MIS가 OPC보다 동일한 배합비에서 침투성능이 우수한 것으로 나타났다. 특히 물시멘트비가 2:1~1:1의 부배합에서 OPC의 침투성능이 매우 낮은 것으로 관찰되었다. 또한 침투량과 주입시간과의 관계곡선을 hyperbolic으로 모델링하여 예측치를 산정하고 이를 측정치와 비교한 결과 그라우트 성능평가에 대한 hyperbolic 모델의 잠재력이 검증되었다.

New experiment recipe for chloride penetration in concrete under water pressure

  • Yoon, In-Seok;Nam, Jin-Won
    • Computers and Concrete
    • /
    • 제17권2호
    • /
    • pp.189-199
    • /
    • 2016
  • Chloride penetration is considered as a most crucial factor for the determination of the service life of concrete. A lot of experimental tools for the chloride penetration into concrete have been developed, however, the mechanism was based on only diffusion, although permeability is also main driving forces for the chloride penetration. Permeation reacts on submerged concrete impacting for short to long term durability while capillary suction occurs on only dried concrete for very early time. Furthermore, hydrostatic pressure increases in proportional to measured depth from the surface of water because of the increasing weight of water exerting downward force from above. It is thought, therefore, that the water pressure has a great influence on the chloride penetration and thereby on the service life of marine concrete. In this study, new experiment is designed to examine the effect of water pressure on chloride penetration in concrete quantitatively. As an experiment result, pressure leaded a quick chlorides penetration by a certain depth, while diffusion induced chlorides to penetrate inward slowly. Therefore, it was concluded that chloride should penetrates significantly by water pressure and the phenomena should be accelerated for concrete exposed to deep sea. The research is expected as a framework to define the service life of submerged concrete with water pressure and compute water permeability coefficient of cementitious materials.

An Optimization of the Porous Asphalt Pavement Permeability Function Focusing on the Surface Free Energy of Polymer Fog-Coat Methods

  • Ohmichi Massaru;Yamanokuchi Hiroshi;Maruyama Teruhiko
    • 한국도로학회논문집
    • /
    • 제8권2호
    • /
    • pp.13-22
    • /
    • 2006
  • Surface fog coating methods to porous pavements with a polymer, that contains MMA as a main ingredient, are being widely used in Japan and called 'Top-Coat Processes'. They have lots of effects such as to prevention of the pavement void choking, improvement of the water permeability of the pavements and so on. The purpose of this research is to show the characterization of the polymer to optimize the functions of the polymer fog-coat methods. This study focused on the difference of 'wetting' by water among polymers used for the fog coatings, and calculation the surface free energy from the water contact angle on each material. At the end, the water permeability test were conducted using porous asphalt mixtures that were coated with several kinds of polymers. The permeability was also measured on the specimens that were forcibly choked by muddy water and the resistance to choking was compared. It is concluded that the reduction of the surface free energy between water and a polymer improves the life of the permeability functions of porous pavements. Improvement of water permeation capacity and void-blocking controlling effects can be quantitatively evaluated using the interfacial tension ($\gamma$sl) with water for the coating material (high-viscosity asphalt and hardening resin binder). Consequently, the smaller the $\gamma$sl of the coating material the higher the water permeation capacity and void-blocking controlling effects of the porous asphalt pavements.

  • PDF

응집 플록 성장률 측정기를 이용한 멤브레인 공정의 전처리 응집공정 평가 (Evaluations of Coagulation Process for Membrane Pre-treatment using Floc Growth Rate Analyzer)

  • 손희종;김상구;김도환;강소원;최영익
    • 한국환경과학회지
    • /
    • 제25권2호
    • /
    • pp.231-238
    • /
    • 2016
  • In this study, we have investigated to find optimal pre-treatment flocculation condition by analyzing the floc growth rate with mixing conditions and the membrane permeation flux for pre-treatment step of the membrane process. The higher mixing intensity showed a constant floc size index (FSI) values, and lower mixing intensity increased the degree of dispersion of the FSI values. Results of comparing the distribution characteristics of the FSI value and the permeation flux were more effective in increasing flux when the FSI values were 0.2 or higher. The degree of dispersion of FSI was relatively large in 40 rpm mixing condition compared to 120 rpm. In 40 rpm mixing condition, it decreased the permeation flux compared to 120 rpm because various sizes of flocs were distributed. Coagulation-UF membrane process enhanced 30%~40% of the flux rate compare to UF alone process, and the coagulation-MF process increased up to 5% of the flux rate compare to MF alone process. Pre-treatment, that is, coagulation process, has been found to be less effects on relatively larger pore size for MF membrane. For UF membrane, the flux was a little bit same when applying only the rapid mixing process or rapid mixing with slow mixing processes together. In case of MF membrane, the flux was improved when rapid mixing process applied with slow mixing process together.

지반침투모형시험에 의한 시멘트그라우트의 주입성능 분석 (Analysis of Injection Efficiency for Cement Grouts by Model Test of Permeation in Soil)

  • 송영수;임희대;최동남
    • 자원환경지질
    • /
    • 제43권2호
    • /
    • pp.177-184
    • /
    • 2010
  • 시멘트 그라우트가 지반의 차수목적으로 사용될 경우 유동성, 입경 및 블리딩이 중요한 역할을 한다. 이들의 성질을 결정하는 가장 중요한 요소 중의 하나는 그라우트의 물시멘트비이며, 지반침투성능을 개선하기 위해서 보통포틀랜드 시멘트 외에 평균입경이 작은 마이크로 시멘트를 사용하고 있다. 또한, 주입효과는 지반조건뿐만 아니라 배합비 및 시멘트의 입경에 따라 좌우된다. 주입에 의한 침투효과를 평가하는 방법으로서는 실제 지반에서 시험 주입하는 것이 가장 확실한 방법이지만 이와 같은 시험주입은 많은 경비와 시간을 필요로 한다. 때문에 주입의 적합여부나 침투효과를 대략적으로 파악하기 위한 간단하고 실용적인 시험방법이 필요하게 된다. 우리나라의 경우 아직 실내에서 그라우트 주입을 재현할 수 있는 기준 및 장비가 전혀 없는 실정이다. 본 연구에서는 실내에서 여러 가지 그라우트의 주입을 일정하게 재현할 수 있는 가압침투주입장치를 개발하였으며 공시체 제작의 표준을 마련하였다. 가압침투주입시힘을 실시하여 자료를 분석한 결과 침투성능은 물시멘트비가 증가할수록 선형적으로 증가하였으며 재료의 평균입경이 작을수록 침투성능이 개선되었다. 또한 마이크로 시멘트인 마이셈 8000과 초미분말 시멘트인 콜로이드 슈퍼 시멘트의 침투성능을 비교한 결과 평균입경이 상대적으로 작은 콜로이드 슈퍼 시멘트가 침투성능이 좋은 것으로 나타났다.

Transdermal Delivery of Diclofenac Using Microemulsions

  • Kweon, Jang-Hoon;Chi, Sang-Cheol;Park, Eun-Seok
    • Archives of Pharmacal Research
    • /
    • 제27권3호
    • /
    • pp.351-356
    • /
    • 2004
  • A transdermal preparation containing diclofenac diethylammonium (DDA) was developed using an O/W microemulsion system. Of the oils tested, lauryl alcohol was chosen as the oil phase of the microemulsion, as it showed a good solubilizing capacity and excellent skin permeation rate of the drug. Pseudoternary phase diagrams were constructed to obtain the concentration range of oil, surfactant and cosurfactant for microemulsion formation, and the effect of these additives on skin permeation of DDA was evaluated with excised rat skins. The optimum formulation of the microemulsion consisted of 1.16% of DDA, 5% of lauryl alcohol, 60% of water in combination with the 34.54% of Labrasol (surfactant)/ethanol (cosurfactant) (1:2). The efficiency of formulation in the percutaneous absorption of DDA was dependent upon the contents of water and lauryl alcohol as well as Labrasol: ethanol mixing ratio. It was concluded that the percutaneous absorption of DDA from microemulsions was enhanced with increasing the lauryl alcohol and water contents, and with decreasing the Labrasol:ethanol mixing ratio in the formulation.

Strength and permeation properties of alccofine activated low calcium fly ash geopolymer concrete

  • Jindal, Bharat Bhushan;Singhal, Dhirendra;Sharma, Sanjay;Yadav, Aniket;Shekhar, Shubham;Anand, Abhishek
    • Computers and Concrete
    • /
    • 제20권6호
    • /
    • pp.683-688
    • /
    • 2017
  • This paper presents the experimental investigations on the compressive strength and permeation properties of geopolymer concrete prepared with low calcium fly ash as the primary binder activated with different percentage of Alccofine. The durability aspect was investigated by performing permeable voids and water absorption tests since permeability directly influences the durability properties. The test results show that Alccofine significantly improves the compressive strength and reduces the water permeability thus enhances the durability of geopolymer concrete at ambient curing regime which encourages the use of geopolymer concrete at ambient curing condition thus promising its use in general construction also.

Thermo-Sensitive Polyurethane Membrane with Controllable Water Vapor Permeation for Food Packaging

  • Zhou, Hu;Shit, Huanhuan;Fan, Haojun;Zhou, Jian;Yuan, Jixin
    • Macromolecular Research
    • /
    • 제17권7호
    • /
    • pp.528-532
    • /
    • 2009
  • The size and shape of free volume (FV) holes available in membrane materials control the rate of gas diffusion and its permeability. Based on this principle, a segmented, thermo-sensitive polyurethane (TSPU) membrane with functional gate, i.e., the ability to sense and respond to external thermo-stimuli, was synthesized. This smart membrane exhibited close-open characteristics to the size of the FV hole and water vapor permeation and thus can be used as smart food packaging materials. Differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), positron annihilation lifetimes (PAL) and water vapor permeability (WVP) were used to evaluate how the morphological structure of TSPU and the temperature influence the FV holes size. In DSC and DMA studies, TSPU with a crystalline transition reversible phase showed an obvious phase-separated structure and a phase transition temperature at $53^{\circ}C$ (defined as the switch temperature and used as a functional gate). Moreover, the switch temperature ($T_s$) and the thermal-sensitivity of TSPU remained available after two or three thermal cyclic processes. The PAL study indicated that the FV hole size of TSPU is closely related to the $T_s$. When the temperature varied cyclically from $T_s-10{\circ}C$ to $T_s+10^{\circ}C$, the average radius (R) of the FV holes of the TSPU membrane also shifted cyclically from 0.23 to 0.467 nm, exhibiting an "open-close" feature. As a result, the WVP of the TSPU membrane also shifted cyclically from 4.30 to $8.58\;kg/m^2{\cdot}d$, which produced an "increase-decrease" response to the thermo-stimuli. This phase transition accompanying significant changes in the FV hole size and WVP can be used to develop "smart materials" with functional gates and controllable water vapor permeation, which support the possible applications of TSPU for food packaging.