DOI QR코드

DOI QR Code

Strength and permeation properties of alccofine activated low calcium fly ash geopolymer concrete

  • Received : 2017.06.23
  • Accepted : 2017.08.09
  • Published : 2017.12.25

Abstract

This paper presents the experimental investigations on the compressive strength and permeation properties of geopolymer concrete prepared with low calcium fly ash as the primary binder activated with different percentage of Alccofine. The durability aspect was investigated by performing permeable voids and water absorption tests since permeability directly influences the durability properties. The test results show that Alccofine significantly improves the compressive strength and reduces the water permeability thus enhances the durability of geopolymer concrete at ambient curing regime which encourages the use of geopolymer concrete at ambient curing condition thus promising its use in general construction also.

Keywords

References

  1. Adam, A.A. (2009), Strength and Durability Properties of Alkali Activated Slag and Fly Ash-Based Geopolymer Concrete, RMIT University Melbourne, Australia.
  2. Aspdin, J. (1824), An Improvement in the Modes of Producing Artificial Stone, Brevet Britannique BP, 5022, 1824.
  3. ASTM C 642 (1982), Test Method for Specific Gravity, Absorption and Voids in Hardened Concrete, Annual Book of ASTM Standards, Pennsylvania, U.S.A.
  4. BIS 3812 (2003), Indian Standard Pulverized Fuel Ash-Specification, Bureau of Indian Standards, New Delhi, India.
  5. BIS 383 (1970), Indian Standard Specification for Coarse and Fine Aggregates from Natural Sources for Concrete, Bureau of Indian Standards, New Delhi, India.
  6. BIS 516 (1959), Indian Standard Methods of Tests for Strength of Concrete, Bureau of Indian Standards, New Delhi, India.
  7. Camoes, A., Aguiar, B. and Jalali, S. (2003), Durability of Low-Cost High-Performance Fly Ash Concrete, International Ash Utilization Symposium, Centre for Applied Energy Research, University of Kentucky.
  8. Concrete, E.I.C.F. (1989), Diagnosis and Assessment of Concrete Structures, State of the Art Report, CEB.
  9. Davidovits, J. (1988), "Soft mineralogy and geopolymers", Proceedings of the Geopolymer 88th International Conference, the Universite de Technologie, Compiegne, France, June.
  10. Davidovits, J. (1999), "Chemistry of geopolymeric systems, terminology", Proceedings of the 99th International Conference, France.
  11. Fernandez-Jimenez, A., Palomo, A. and Criado, M. (2005), "Microstructure development of alkali-activated fly ash cement: A descriptive model", Cement Concrete Res., 35(6), 1204-1209. https://doi.org/10.1016/j.cemconres.2004.08.021
  12. Ganesan, N., Indira, P.V. and Santhakumar, A. (2013), "Engineering properties of steel fibre reinforced geopolymer concrete", Adv. Concrete Constr., 1(4), 305-318. https://doi.org/10.12989/acc2013.1.4.305
  13. Hardjito, D. and Rangan, B.V. (2005), "Development and properties of low calcium fly ash based geopolymer concrete", Curtin University of Technology, GC1.
  14. Hardjito, D., Wallah, S.E., Sumajouw, D.M.J. and Rangan, B.V. (2004), "On the development of fly ash-based geopolymer concrete", ACI Mater. J., 101(6), 467-472.
  15. Jain, A.K. (2016), Status of Availability, Utilization, and Potential of Fly Ash Use in Construction, UltraTech Cement Ltd, India.
  16. Jindal, B.B., Singhal, D., Sharma, S.K., Ashish, D.K. and Parveen. (2017), "Improving compressive strength of low calcium fly ash geopolymer concrete with alccofine", Adv. Concrete Constr., 5(1), 17-29. https://doi.org/10.12989/acc.2017.5.1.17
  17. Jindal, B.B., Yadav, A., Anand, A. and Badal, A. (2015), "Development of high strength fly ash based geopolymer concrete with alccofine", IOSR J. Mech. Civil Eng., 55-58.
  18. Junaid, M.T., Kayali, O., Khennane, A. and Black, J. (2015), "A mix design procedure for low calcium alkali activated fly ash- based concrete", J. Constr. Build. Mater., 79, 301-310. https://doi.org/10.1016/j.conbuildmat.2015.01.048
  19. Nath, P. and Sarker, P. (2011), "Effect of fly ash on the durability properties of high strength concrete", Proc. Eng., 14, 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
  20. Nath, P., Sarker, P.K. and Rangan, B.V. (2015), "Early age properties of low-calcium fly ash geopolymer concrete suitable for ambient curing", Proc. Eng., 125, 601-607. https://doi.org/10.1016/j.proeng.2015.11.077
  21. Palomo, A., Grutzeck, M.W. and Blanco, M.T. (1999), "Alkali-activated fly ashes: A cement for the future", Cement Concrete Res., 29(8), 1323-1329. https://doi.org/10.1016/S0008-8846(98)00243-9
  22. Patil, A.A., Chore, H. and Dodeb, P. (2014), "Effect of curing condition on strength of geopolymer concrete", Adv. Concrete Constr., 2(1), 29-37. https://doi.org/10.12989/acc.2014.2.1.029
  23. Patil, B.M.V.K. and Narendra, H. (2015), "Durability studies on sustainable geopolymer concrete", Res. J. Eng. Technol., 2(4), 671-677.
  24. Shaikh, F.U. (2014), "Effects of alkali solutions on corrosion durability of geopolymer concrete", Adv. Concrete Constr., 2(2), 109-123. https://doi.org/10.12989/acc.2014.2.2.109
  25. Sharma, C. and Jindal, B.B. (2015), "Effect of variation of fly ash on the compressive strength of fly ash based geopolymer concrete", IOSR J. Mech. Civil Eng., 42-44.
  26. Xu, H. and Van Deventer, J.S.J. (2000), "The geopolymerisation of aluminosilicate minerals", J. Min. Proc., 59(3), 247-266. https://doi.org/10.1016/S0301-7516(99)00074-5

Cited by

  1. Strength enhancement of concrete incorporating alccofine and SNF based admixture vol.9, pp.4, 2020, https://doi.org/10.12989/acc.2020.9.4.345