• Title/Summary/Keyword: Water model

Search Result 13,750, Processing Time 0.034 seconds

The Development of Dynamic Model for Long-Term Simulation in Water Distribution Systems (상수관망시스템에서의 장기간 모의를 위한 동역학적 모형의 개발)

  • Park, Jae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.325-334
    • /
    • 2007
  • In this study, a long-term unsteady simulation model has been developed using rigid water column theory which is more accurate than Extended-period model and more efficient comparing with water-hammer simulation model. The developed model is applied to 24-hours unsteady simulation considering daily water-demand and water-hammer analysis caused by closing a valve. For the case of 24-hours daily simulation, the pressure of each node decreases as the water demand increase, and when the water demand decrease, the pressure increases. During the simulation, the amplitudes of flow and pressure variation are different in each node and the pattern of flow variation as well as water demand is quite different than that of KYPIPE2. Such discrepancy necessitates the development of unsteady flow analysis model in water distribution network system. When the model is applied to water-hammer analysis, the pressure and flow variation occurred simultaneously through the entire network system by neglecting the compressibility of water. Although water-hammer model shows the lag of travel time due to fluid elasticity, in the aspect of pressure and flow fluctuation, the trend of overall variation and quantity of the result are similar to that of water-hammer model. This model is expected for the analysis of gradual long-term unsteady flow variations providing computational accuracy and efficiency as well as identifying pollutant dispersion, pressure control, leakage reduction corresponding to flow-demand pattern, and management of long-term pipeline net work systems related with flowrate and pressure variation in pipeline network systems

Multi-variable and Multi-site Calibration and Validation of SWAT for the Gap River Catchment (갑천유역을 대상으로 SWAT 모형의 다 변수 및 다 지점 검.보정)

  • Kim, Jeong-Kon;Son, Kyong-Ho;Noh, Jun-Woo;Jang, Chang-Lae;Ko, Ick-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.10 s.171
    • /
    • pp.867-880
    • /
    • 2006
  • Hydrological models with many parameters and complex model structures require a powerful and detailed model calibration/validation scheme. In this study, we proposed a multi-variable and multi-site calibration and validation framework for the Soil Water Assessment Tool (SWAT) model applied in the Gap-cheon catchment located downstream of the Geum river basin. The sensitivity analysis conducted before main calibration helped understand various hydrological processes and the characteristics of subcatchments by identifying sensitive parameters in the model. In addition, the model's parameters were estimated based on existing data prior to calibration in order to increase the validity of model. The Nash-Sutcliffe coefficients and correlation coefficient were used to estimate compare model output with the observed streamflow data: $R_{eff}\;and\;R^2$ ranged 0.41-0.84 and 0.5-0.86, respectively, at the Heuduck station. Model reproduced baseflow estimated using recursive digital filter except for 2-5% overestimation at the Sindae and Boksu stations. Model also reproduced the temporal variability and fluctuation magnitude of observed groundwater levels with $R^2$ of 0.71 except for certain periods. Therefore, it was concluded that the use of multi-variable and multi-site method provided high confidence for the structure and estimated parameter values of the model.

Development of Agricultural Groundwater Usage Model Considering Multipurpose Water in Jeju Island (다목적 용수를 고려한 제주도 농업용 지하수 이용량 모델 개발)

  • An, Jung-Gi;Song, Sung-Ho;Lee, Dong-Rim
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.515-524
    • /
    • 2015
  • The estimation of groundwater usage in Jeju island is important to understand hydrologic cycle system and to plan management of water resource because large amounts of groundwater have been used for agricultural and domestic purpose. The model has been developed to estimate agricultural groundwater usage for garlic at uplands and citrus at orchards raising outdoors using the soil water balance model from FAO 56, respectively. The total amount of water supplied for the crop evapotranspiration and the multipurpose function such as sprout promotion can be simulated by the model. However, due to the discrepancy of water use in initial stage between calculated and observed, the model was calibrated and verified using actual groundwater usage monitoring data for 3.5 years (2011.6 to 2014.12) at three uplands for garlic and three orchards for citrus. Consequently, it would be concluded that the model simulated efficiently actual water usage in that root mean square (RMS) and normalized RMS of the validation stage were less than 8.99 mm and 2.43%, respectively, in two different conditions.

DEVELOPMENT OF 2D DAM BREAK FLOW ANALYSIS MODEL USING FRACTIONAL STEP METHOD

  • Kim, Dae-hong;Kim, Woo-gu;Chae, Hyo-sok;Park, Sang-geun
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • A numerical model for the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

Development of a Stream Water Quality Model (QUAL-NIER) for the Management of Total Maximum Daily Loads (수질오염총량관리를 위한 하천수질모델(QUAL-NIER) 개발)

  • Park, Jun Dae;Shin, Dong Seok;Kim, Moon Sook;Kong, Dong Soo;Rhew, Doug Hee;Jung, Dong-Il;Na, Eun Hye
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.784-792
    • /
    • 2008
  • Greater focus must be placed on ensuring that the water quality model (WQM) reflects the objective of its application and the characteristics of the water environment properly before it is selected. In the development or application of WQM, various factors influencing the model predictions should be reviewed so that it can perform more properly and reasonably based on scientific theory. This study reviewed the characteristic of existing WQM and the domestic river environment to find the requirements of the model application for TMDLs management in Korea. In this study, a water quality model, QUAL-NIER, was developed based on the USEPA's QUAL2E. The core structure and reaction scheme of the model was established followed by the formulation of equations according to the scheme with some supplements on the reaction mechanisms which are necessary for domestic rivers. Algorithms on the equations were set up and programmed to form a computer-based model. The developed model, QUAL-NIER was applied to the main stem of the Nakdong river. The model was calibrated and verified to data measured in 2004. The model results displayed good agrement with the field measurements for both calibration and verification. From this study, it was concluded that the developed QUAL-NIER model was very powerful with regard to the water quality simulation in domestic rivers.

Development of Optimal Network Model for Conjunctive Operation of Water Supply System with Multiple Sources (다수원 상수도시스템 연계운영을 위한 최적 네트워크 모형 구축)

  • Ryu, Tae-Sang;Ha, Sung-Ryong;Cheong, Tae-Sung
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.1001-1013
    • /
    • 2011
  • Development of an optimal water supply system considering water quantity, quality, and economical efficiency is needed to decide optimal available area by combine water supply systems in overlapped area where are more than 2 water sources. The EPAnet and the KModSim were coupled to develop optimal network model. The developed network model was calibrated by measured data from water supply system in Geoje City, Korea in 2007 which have three water sources such as Sadeong booster pumping station, Guchun dam reservoir and Yoncho dam reservoir. The optimum network model was validated by operating results of 2011 to assess the economically optimized service area and optimal pump combination under the given hydraulic operating rules developed in this study. The developed model can be applied into designing water supply systems and operating rules for the conjunctive operation since the model can give the optimal solution satisfied with water quantity, economical efficiency and quality.

Application of EFDC and WASP7 in Series for Water Quality Modeling of the Yongdam Lake, Korea

  • Seo, Dong-Il;Kim, Min-Ae
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.6
    • /
    • pp.439-447
    • /
    • 2011
  • This study aims to test the feasibility of combined use of EFDC (Environmental Fluid Dynamics Code) hydrodynamic model and WASP7.3 (Water Quality Analysis Program) model to improve accuracy of water quality predictions of the Yongdam Lake, Korea. The orthogonal curvilinear grid system was used for EFDC model to represent riverine shape of the study area. Relationship between volume, surface and elevation results were checked to verify if the grid system represents morphology of the lake properly. Monthly average boundary water quality conditions were estimated using the monthly monitored water quality data from Korean Ministry of Environment DB system. Monthly tributary flow rates were back-routed using dam discharge data and allocated in proportion to each basin area as direct measurements were not available. The optimum number of grid system was determined to be 372 horizontal cells and 10 vertical layers of the site for 1 year simulation of hydrodynamics and water quality out of iterative trials. Monthly observed BOD, TN, TP and Chl-a concentrations inside the lake were used for calibration of WASP7.3 model. This study shows that EFDC and WASP can be used in series successfully to improve accuracy in water quality modeling. However, it was observed that the amount of data to develop inflow water quality and flow rate boundary conditions and water quality data inside lake for calibration were not enough for accurate modeling. It is suggested that object-oriented data collection systems would be necessary to ensure accuracy of EFDC-WASP model application and thus for efficient lake water quality management strategy development.

Modeling Study of Turbid Water in the Stratified Reservoir using linkage of HSPF and CE-QUAL-W2 (HSPF와 CE-QUAL-W2 모델의 연계 적용을 이용한 용담댐 저수지 탁수현상의 모델 연구)

  • Yi, Hye-Suk;Jeong, Sun-A;Park, Sang-Young;Lee, Yo-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.69-78
    • /
    • 2008
  • An integration study of watershed model(HSPF, Hydological Simulation program-Fortran) and reservoir water quality model (CE-QUAL-W2) was performed for the evaluation of turbid water management in Yongdam reservoir. The watershed model was calibrated and analyzed for flow and suspended solid concentration variation during rainy period, their results were inputted for reservoir water quality model as time-variable water temperature and turbidity. Results of the watershed model showed a good agreement with the field measurements of flow and suspended solid. Also, results of the reservoir water quality model showed a good agreement with the filed measurements of water balance, water temperature and turbidity using linkage of the watershed model results. Integration of watershed and reservoir model is an important in turbid water management because flow and turbidity in stream and high turbidity layer in reservoir could be predicted and analyzed. In this study, the integration of HSPF and CE-QUAL-W2 was applied for the turbid water management in Yongdam reservoir, where it is evaluated to be appliable and important.

An Experimental Analysis of Effective Thermal Conductivity of Porous Materials Using Structural Models (구조모델을 이용한 다공성 매질의 유효열전도도 분석)

  • Cha, Jang-Hwan;Koo, Min-Ho;Keehm, Young-Seuk
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.91-98
    • /
    • 2010
  • The effective thermal conductivity of porous materials is usually determined by porosity, water content, and the conductivity of the matrix. In addition, it is also affected by the internal structure of the materials such as the size, arrangement, and connectivity of the matrix-forming grains. Based on the structural models for multi-phase materials, thermal conductivities of soils and sands measured with varying the water content were analyzed. Thermal conductivities of dry samples were likely to fall in the region between the Maxwell-Eucken model with air as the continuous phase and the matrix as the dispersed phase ($ME_{air}$) and the co-continuous (CC) model. However, water-saturated samples moved down to the region between the $ME_{wat}$ model and the series model. The predictive inconsistency of the structural models for dry and water-saturated samples may be caused by the increase of porosity for water-saturated samples, which leads to decrease of connectivity among the grains of matrix. In cases of variably saturated samples with a uniform grain size, the thermal conductivity showed progressive changes of the structural models from the $ME_{air}$ model to the $ME_{wat}$ model depending on the water content. Especially, an abrupt increase found in 0-20% of the water content, showing transition from the $ME_{air}$ model to the CC model, can be attributed to change of water from the dispersed to continuous phase. On the contrary, the undisturbed soil samples with various sizes of grains showed a gradual increase of conductivity during the transition from the $ME_{air}$ model to the CC model.

A development of system dynamics model for water, energy, and food nexus (W-E-F nexus)

  • Wicaksono, Albert;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.220-220
    • /
    • 2015
  • Water, energy, and food security already became a risk that threatens people around the world. Increasing of resources demand, rapid urbanization, decreasing of natural resources and climate change are four major problems inducing resources' scarcity. Indeed, water, energy, and food are interconnected each other thus cannot be analyzed separately. That is, for simple example, energy needs water as source for hydropower plant, water needs energy for distribution, and food needs water and energy for production, which is defined as W-E-F nexus. Due to their complicated linkage, it needs a computer model to simulate and analyze the nexus. Development of a computer simulation model using system dynamics approach makes this linkage possible to be visualized and quantified. System dynamics can be defined as an approach to learn the feedback connections of all elements in a complex system, which mean, every element's interaction is simulated simultaneously. Present W-E-F nexus models do not calculate and simulate the element's interaction simultaneously. Existing models only calculate the amount of water and energy resources that needed to provide food, water, or energy without any interaction from the product to resources. The new proposed model tries to cope these lacks by adding the interactions, climate change effect, and government policy to optimize the best options to maintain the resources sustainability. On this first phase of development, the model is developed only to learn and analyze the interaction between elements based on scenario of fulfilling the increasing of resources demand, due to population growth. The model is developed using the Vensim, well-known system dynamics model software. The results are amount of total water, energy, and food demand and production for a certain time period and it is evaluated to determine the sustainability of resources.

  • PDF