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DEVELOPMENT OF 2D DAM BREAK FLOW
ANALYSIS MODEL USING
FRACTIONAL STEP METHOD
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Abstract: A numerical model for the solution of two-dimensional dam break problems using fractional step method is

developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with

HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy,

TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solu-

tions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.
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1. INTRODUCTION

In dam break problems flow would change
abruptly in space and time. The conservative
form of the governing equations are more ap-
propriate for the problems containing disconti-
nuities in the solution. The problems which in-
volve discontinuities in the solution are known
as Riemann problems and numerical schemes
essentially solve linearized Riemann problems.
To achieve higher order accuracy and higher
shock resolution, sophisticated techniques are
required to obtain physically reasonable solu-
tions from the Riemann solver. This is achieved
by limiting the flux or the dependent variables
so that oscillations that are associated with
higher order schemes are eliminated.

In this study, the fractional step method is
used to solve the shallow water equations on

unstructured grid. This method reduces the
two-dimensional problem into a sequence of two
one-dimensional problems by decomposing the
system of governing equation into a product of
several simpler operators. Thus, in each frac-
tional step a simple one-dimensional system of
equation can be solved, so the computational
effort is decreased. Second advantage of this
method is that the limitation on time step size is
less severe than that for a common two- dimen-
sional explicit scheme. Additionally, there is
close relationship between fractional step
method and Finite Volume Method(FVM).

2. GOVERNING EQUATIONS

2.1 Shallow Water Equations

The two dimensional shallow water equations
in conservative form are given by
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In equation (1), the vector of conserved vari-
ables U, the flux vector E and F in the x- and
y-direction and source term .S can be written as,

respectively,
h o
U =|hu|, S=|gh(S,-S5,)
hv _gh(Sﬁz_Soy)
hu i
1 hv
E= huz +—2-th , F = huv
huv v+ l—gh 2
L 2

where g is the acceleration due to gravity,

Sf xy
h is water depth, # and Vv are the velocity
inthe X— and y —direction, respectively.

is friction slope, S , 1s bottom slope,

2.2 Fractional Step Method

It is very difficult to use two-dimensional Rie-
mann solvers in the two-dimensional problem. Even
if such solvers were available, the resulting schemes
are likely to be too complicated for common use.
On the other hand, a number of efficient and robust
one-dimensional approximate Riemann solvers have
been proposed. By using fractional step method,
these can be used to solve the two- dimensional
shallow water equations easily.

For homogeneous problems, the fractional
step method involves replacing equation (1) by
the sequence of two one-dimensional problems.
That is,

ouU 0E At
PDE a_t+§_ O}Q U*'H]/Z (2)
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If we denote x* and yA', the solution op-

erators for initial value problems of equation (2)
and (3) then the approximate solution can be

written as
Un+l :yAtxAt(Un) (4)
or
Un+] =xAtyAr(Un) (5)

The solution obtained by equation (4) and (5)
has only first order accuracy in time. The solu-
tion that has second-order accuracy can be ob-

tained by using
Un+l :xAt/ZyAtxAt/Z(Un) (6)
or
UrH—l — yAl/ZxAtyAl/2(Un) (7)

For inhomogeneous problems, the source term
can be solved with fractional step method using
ordinary differential solver

du N
ODE . 7— - = U n+l1 (8)
IC Ut

2.3 Finite Volume Method

The FVM is an approach for dealing with
general unstructured grid. The major advantages
of FVM; @ the ability to use flexible grid,
such as triangles or quadrilaterals which suit
problems with complex geometries, @ use of
an integral conservation law such that the solu-
tion may be smooth or discontinuous, and @

close relationship between fractional step
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method and FVM.

Integrating the equation (1) over an arbitrary
cell, the basic equation of the FVM obtained
using the divergence theorem can be written as,

% [ Uda+§G -nds =0 )

where G is the flux tensor, 4 and S are the area
and boundary of control volume L respectively,
and # is the unit outward vector normal to the
boundary. Assuming the x-direction as the ref-
erence direction and using the rotational invari-
ance of the flux becomes

G . n=T;'G(T ,U) (10)
where I, the transformation matrix, namely
1 0 0

T.(6)=|0 sin@ (11)
0 -—sin@ cosd

cosd

Using the equation (10), the equation (11) be-
comes
dU
a |V

MLy L” T.G(T Uyis =0 12

s=1

YA

=(cos o, sinb)

x-direction

X

Fig. 1. Quadrilateral finite volume in 2D
unstructured domain (Zhao, 1996)
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. By employing the new conserved values
U =T,U, which are aligned with the rotated
axises x and y in Fig. 1, the two-dimen

sional problems can be dealt with as a sequence

of two one-dimensional problems, that is, frac-
a)

tional step method, in transformed ( x , )A/ ) do-

main.

3. TVD VERSION OF WAF METHOD

3.1 HLLC Approximate Riemann Solver
The HLLC approximate Riemann solver is
given as follows

U, Sor 0<S.

U; §, 208,
Ux,t) = L for L

U Sor S.<0<8, (13)

U, Sor Sp<0

In order to determine the numerical fluxes in
HLLC Riemann solvers we need to estimate the
wave speed in equation (10). The estimates of
the wave speed, in this study, are given as

S, =min(u, —\/gh, ,u. —+/gh.)
S*=u‘=%+1/ghL—,/ghR (14)
Sep=max(u, ++/gh, ,u.++/gh)

In the view (13) the HLLC flux can be written
as

E, for 0§,
ac_)E =E+8,U~U,) for §,<0<S,
M2 B =B +S Uy -U, for S.<0<S,

Er JorS§<0

(15)

where i+1/2 means the intercell boundary be-
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tween L and R in Fig. 1.
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Fig. 2. HLLC approximate Riemann
solver structure(Toro, 1999)

3.2 TVD Version of WAF Second Order
Scheme
The second-order accurate WAF scheme is
given as

1 1 &
Eiira :E(Ei +Ei+1)_EZCkak+|/z (16)
k=1

where E*

i+1/2

equation (15), C, is the courant number for

=E(U},,) can be replaced by

wave k of speed §, and AE},,is given as
AEi]:I/Z = Eik:;}z _Eilll/Z (17)

In order to control the nonphysical oscillation
associated with second-order accuracy, TVD
scheme is employed. The TVD version of WAF
scheme is given as

1 &
Epn= E(E, +Ei+|)+EZSIgn(Ck)V/iI:-I/ZAEIkH/Z
=1

(18)
where ‘/’ik+ s is a WAF limiter function. In this

study the SUPERBEE limiter is used.

Water Engineering Research, Vol. 3, No.1, 2002

A t
S.
S Ay
E*L E*R

W, W W/ Wi
7 T tn+l/2
| E. E. |
| | t

-AX2 0 AX/2

Fig. 3. Numerical flux and weights in

WAF method
1 Jfor o<r
1-2(1—|cphr  for <r<i1/2
p(r, c)= || for  1/2<0<1

1-(1—|chr for  1<r<2
2|c|-—l Sfor 2<r

(19)

where r is the ratio of the upwind change to the
local change. The detail derivation procedures
of the equation (16) and (18) are written on Lee
and Cho(2001).

4. NUMERICAL APPLICATIONS AND
RESULTS

4.1 Idealized Dam Break Problems

To verify the accuracy of developed model,
two idealized dam break problems iltustrated in
Fig. 4(a) are solved on 320X9 cells. The water
depth A, and h, represent the initial water
depth in reservoir and tailwater, respectively.

The Fig. 4(c) and (d) describe the solutions
obtained for 60 second after dam break. The
analytic solutions are given by Tan(1992). The
solutions of ENO2 and TVD?2 are obtained by
using the methods proposed by Kim(2001). As
the Fig. 4 (¢) and (d), it may be concluded that
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Fig. 4. 1dealized Dam Break Problem
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(b) 3D view of water surface

Fig. 5. Oblique hydraulic jump
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Fig. 6. Circular dam break problem

the computational solutions are very good
agreement with the analytic solutions.

4.2 Oblique Hydraulic Jump

Let the alignment of the vertical sidewall of a
channel change inward into flow by angle @, as

shown in Fig. 5(a). At the inlet, the water depth
is 1.0m and the inlet velocity is 8.75m/s. The
vertical sidewall length is 40m, the inlet width is
30m and inward wall angle @ is 8.95°. The
flow is supercritical at the inlet and oblique hy-
draulic jump occurs at the transition from su-
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percritical to subcritical flows. The Fig. 5 show
the computed results that B, ~30° and the

water depths at the subcritical region are be-
tween 1.498m and 1.507m on 40°<30 computa-
tional domain. The analytical solution predicts

water depth at subcritical region is 1.5m and the
shock wave front angle g =30°((Masayuki,

2000). It may also be concluded the accuracy of
this developed model is excellent.

4.3 Circular Dam Break Problem

Another dam break problem is tested using
100100 square cells. In this case, the initial
condition of the cylinder radius is 10.0m and its
water depth is 10.0m. The outside region water
depth of the circular dam is 1.0m and the veloci-
ties u and v are 0.0m/s, respectively. The Fig. 6
describes the computational solutions obtained
for 0.69 second after dam break.

5. CONCLUSIONS

A numerical model for the solution of
two-dimensional dam break problems is devel-
oped on unstructured grid. Using fractional step
method, two-dimensional shallow water equa-
tions are treated as one-dimensional problems.
Thus, it is possible to simulate computational
hydraulic problems with higher computational
efficiency. The one-dimensional problems are
solved using a second-order Weighted Averaged
Flux scheme with HLLC approximate Riemann
solver. The numerical oscillations which are
common with second-order numerical scheme
are controlled by exploiting SUPERBEE limiter.
Some idealized problems are solved using the
model and very accurate and stable solutions are
obtained. It can be concluded as an efficient
implement for the computation of dam break
problems, especially those problems concerning
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discontinuities, subcritical and supercritical

flows and complex domain.
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