• Title/Summary/Keyword: Water driving ejector

Search Result 6, Processing Time 0.02 seconds

Characteristics of Cooling Down in the Enclosed Vacuum Tank by Water Driving Ejector (수 이젝터를 이용한 밀폐형 진공탱크내의 온도저감 특성)

  • Kim, Se-Hyun;Shin, You-Sik;Bae, Kang-Youl;Lee, Youn-Whan;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.700-705
    • /
    • 2003
  • The general cooling tower is a device for making a cooling water in refrigerant condensers or industrial process heat exchangers. The present cooling tower have defects with noises, complicated structure and environmental problems. In this paper, we constituted a new water cooling system by using a evaporating latent heat in an enclosed tank, and this system is consisted of an enclosed vacuum tank and water driving ejector system. Several experimental cases were carried out for improvement methods of high vacuum pressure and water cooling characteristics. The ejector performance was tested in case of water temperature variations that flows in the ejector. Based on the vacuum pressure by water driving ejector, the water cooling characteristics were investigated for the vaporized air condensing effects.

  • PDF

Study on the Swirling Motion Effect of Ejector Performance (회전 운동이 이젝터 성능에 미치는 영향에 관한 연구)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.544-549
    • /
    • 2017
  • This paper aims to examine the effect of rotational fluid motion about the efficiency of the gas - liquid ejector, which is a core unit in a ship equilibrium water treatment system. The ejector is a device for injecting ozone into ship equilibrium by the negative pressure generated by exchange of momentum between water and ozone. The existing ejector ejects the driving fluid with a simple form. In this paper, however, a rotation induction device is applied to the driving nozzle so that the driving fluid can be rotated and injected. To investigate the flow characteristics by the rotational movement of the driving fluid, CFD was used. The pressure and flow rate of the driving fluid, the negative pressure and suction flow rate of the suction fluid in the suction part, and the discharge pressure were predicted. On the basis of the results, the efficiency of the ejector using the rotation induction system was 22.25%, which was about 1.7% better than that of the existing ejector. Finally, to verify the feasibility of the CFD, an experiment was conducted on the ejector using the rotation induction device and the results were similar to those of the CFD.

Optimization of ejector for swirl flow using CFD (CFD를 이용한 회전 운동을 하는 이젝터의 최적화)

  • Kang, Sang-Hoon;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.31-37
    • /
    • 2017
  • This paper investigates the effect of the rotational motion of a driving fluid generated by a rotational motion device at the inlet of a driving nozzle for a gas-liquid ejector, which is the main device used for ozonated ship ballast water treatment. An experimental apparatus was constructed to study the pressure and suction flow rate of each port of the ejector according to the back pressure. Experimental data were acquired for the ejector without rotational motion. Based on the data, a finite element model was then developed. The rotational motion of the driving fluid could improve the suction efficiency of the ejector based on the CFD model. Based on the CFD results, structure optimization was performed for the internal shape of the rotation induction device to increase the suction flow rate of the ejector, which was performed using the kriging technique and a metamodel. The optimized rotation induction device improved the ejector efficiency by about 3% compared to an ejector without rotational motion of the driving fluid.

CFD Analysis on the Flow Characteristics of Ejector According to the Position Changes of Driving Nozzle for F.W.G (수치해석을 이용한 담수장치용 이젝터의 노즐위치 변화에 따른 이젝터 유동특성 연구)

  • Joo, Hong-Jin;Jung, Il-Young;Yun, Sang-Kook;Kwak, Hee-Youl
    • Journal of the Korean Solar Energy Society
    • /
    • v.31 no.3
    • /
    • pp.23-28
    • /
    • 2011
  • In this study, the ejector design was modeled using Fluent 6.3 of FVM(Finite Volume Method) CFD(Computational Fluid Dynamics) techniques to resolve the flow dynamics in the ejector. A vacuum system with the ejector has been widely used because of its simple construction and easy maintenance. Ejector is the main part of the desalination system, of which designs determine the efficiency of system. The effects of the ejector was investigated geometry and the operating conditions in the hydraulic characteristics. The ejector consists mainly of a nozzle, suction chamber, mixing tube (throat), diffuser and draft tube. Liquid is supplied to the ejector nozzle, the fast liquid jet produced by the nozzle entrains and the non condensable gas was sucked into the mixing tube. The multiphase CFD modeling was carried out to determine the hydrodynamic characteristics of seawater-air ejector. Condition of the simulation was varied in entrance mass flow rate (1kg/s, 1.5kg/s, 2kg/s, 2.5kg/s, 3kg/s), and position of driving nozzle was located from the central axis of the suction at -10mm, 0mm, 10mm, 20mm, 30mm.. Asaresult, suction flow velocity has the highest value in central axis of the suction.

STUDY ON THE PERFORMANCE OF THE SHAPE OF THE AIR-LIQUID EJECTOR DIFFUSER (기체-액체 이젝터의 디퓨저 형상에 대한 연구)

  • Jang, Jin-Woo;Sin, Won-Hyeop;Park, Young-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.11
    • /
    • pp.6412-6418
    • /
    • 2014
  • This paper performed a numerical study of an air-liquid ejector. An ejector is a fluid-transportation device that spouts high-pressure fluid from driving pipes using the kinetic energy of the spouted fluid and increases the pressure through the exchange of momentum with the surrounding gases of the lower pressure. The air-liquid ejector was investigated through steady three-dimensional multiphase CFD analysis using commercial software ANSYS-CFX 14.0. Water as the primary fluid is driven through the driving nozzle and air is ejected as the second gas instead of ozone in real applications. The difference in performance according to the shape of the diffuser of the ejector was examined. The results provide deep insight into the influence of various factors on the performance of the air-liquid ejector. The proposed numerical model will be very helpful for further design optimization of the air-liquid ejectors.

Heat Exchange Charaterictics of Water under the Low Pressure by driving Ejector (에젝터 구동 저압 증발하에서 물의 열교환 특성)

  • Shin, Yu-Sik;Lee, Youn-Hwan;Lee, Sang-Chul;Kim, Se-Hyun;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1885-1890
    • /
    • 2003
  • The cooling tower is a device for making a cooling water in the air conditioning system of building, and there are many kinds of cooling tower system for air conditioner. In this paper, we introduced the water cooling system with an enclosed tank and water ejecting system for evaporating the water in tank. The city water was used for a working fluid, and the cooling water is generated by evaporating latent heat in the tank with a $25{\sim}50mmHg$. The time to reaching this vacuum pressure was about $20{\sim}30minutes$, and cooling water was obtained the value of temperature difference ${\Delta}T=7^{\circ}C$.

  • PDF