• Title/Summary/Keyword: Water curing

Search Result 945, Processing Time 0.026 seconds

Errors in light-emitting diodes positioning when curing bulk fill and incremental composites: impact on properties after aging

  • Abdulrahman A. Balhaddad;Isadora M. Garcia;Haifa Maktabi;Maria Salem Ibrahim;Qoot Alkhubaizi;Howard Strassler;Fabricio M. Collares;Mary Anne S. Melo
    • Restorative Dentistry and Endodontics
    • /
    • v.46 no.4
    • /
    • pp.51.1-51.13
    • /
    • 2021
  • Objectives: This study aimed to evaluate the effect of improper positioning single-peak and multi-peak lights on color change, microhardness of bottom and top, and surface topography of bulk fill and incremental composites after artificial aging for 1 year. Materials and Methods: Bulk fill and incremental composites were cured using multi-peak and single-peak light-emitting diode (LED) following 4 clinical conditions: (1) optimal condition (no angulation or tip displacement), (2) tip-displacement (2 mm), (3) slight tip angulation (α = 20°) and (4) moderate tip angulation (α = 35°). After 1-year of water aging, the specimens were analyzed for color changes (ΔE), Vickers hardness, surface topography (Ra, Rt, and Rv), and scanning electron microscopy. Results: For samples cured by single-peak LED, the improper positioning significantly increases the color change compared to the optimal position regardless of the type of composite (p < 0.001). For multi-peak LED, the type of resin composite and the curing condition displayed a significant effect on ΔE (p < 0.001). For both LEDs, the Vickers hardness and bottom/top ratio of Vickers hardness were affected by the type of composite and the curing condition (p < 0.01). Conclusions: The bulk fill composite presented greater resistance to wear, higher color stability, and better microhardness than the incremental composite when subjected to improper curing. The multi-peak LED improves curing under improper conditions compared to single-peak LED. Prevention of errors when curing composites requires the attention of all personnel involved in the patient's care once the clinical relevance of the appropriate polymerization reflects on reliable long-term outcomes.

Early Strength Development Properties of Concrete using Early Strength Improvement Type Cement (조기강도 개선형 시멘트를 사용한 콘크리트의 조기강도 발현 특성)

  • Park, Kyu-Yeon;Kim, Yong-Ro;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2013
  • In this research, early strength development performance of early strength improvement type ordinary cement which is economically feasible early strength cement(Type III), improved early strength ordinary cement(Type I), was estimated to derive minimum curing temperature and proper water to cement ratio according to cement for early strength development through examination of fresh concrete properties and compressive strength according to water to cement ratio curing $10^{\circ}C$, $15^{\circ}C$ and $20^{\circ}C$ to suggest fundamental data for practical use of early strength concrete.

Electrical resistivity survey for evaluation of reinforced region by cement grouting in dike (전기비저항 수직탐사를 이용한 저수지 그라우팅 구간 평가)

  • 송성호;장의웅;김진호;김진성;김진춘
    • The Journal of Engineering Geology
    • /
    • v.12 no.1
    • /
    • pp.63-73
    • /
    • 2002
  • To evaluate reinforced region of dike by cement grouting, we investigated both the electrical resistivity and the strength of cement grout having various water-cement ratio with curing time. These investigation results showed that the electric conductivity of grout is much higher than that of water and that the apparent resistivity of grouted region is much lower than that of unoccupied region by grout. It was founded that electrical resistivity survey might be quite effective to detect grout region in dike. As the results of electrical resistivity sounding at three dikes, apparent resistivities after grouting showed several tens to several hundreds of ohm-m which were lower than those of pre-grouting and showed stabilizing trend with curing time. From these results, we could estimate that this behavior of apparent resistivity is due to increasing strength with curing time.

Investigation of Flexural Toughness Development of Steel Fiber Reinforced Concrete at Early Ages (강섬유 보강 콘크리트의 조기 재령에서의 휨 인성 발현에 관한 연구)

  • Lee, Chang-Joon;Shin, Sung-Woo
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.6
    • /
    • pp.103-110
    • /
    • 2009
  • Since the mechanical properties of cement-based materials are time-dependent due to the prolonged cement hydration process, those of fiber reinforced concrete(FRC) may also be time-dependent. Toughness is one of important properties of FRC. Therefore, it should be investigated toughness development of FRCs with curing ages to fully understand the time-dependent characteristics of FRCs. To this end, the effect of curing ages on flexural toughness development of steel fiber reinforced concrete is studied. Three point bending test with notched beam specimen was adapted for this study. Hooked-end steel fiber(DRAMIX 40/30) was used as a fiber ingredient to investigate w/c ratio and fiber volume fraction effect on toughness development during curing. Three different water-cement ratios(0.44, 0.5 and 0.6) and fiber volume fractions(0%, 0.5% and 1%) were used as influence factors. Each mixture specimens were tested at five different ages, 0.5, 1, 3, 7 and 28 days. The study shows that flexure toughness development with age is quite different than other concrete material properties such as compressive strength. The study also shows that the toughness development trend correlates more closely to water/cement ratio than to fiber volume fraction.

Numerical simulation on integrated curing-leaching process of slag-blended cement pastes

  • Xiang-Nan Li;Xiao-Bao Zuo;Yu-Xiao Zou;Guang-Pan Zhou
    • Computers and Concrete
    • /
    • v.32 no.1
    • /
    • pp.45-60
    • /
    • 2023
  • Concrete in water environment is easily subjected to the attack of leaching, which causes its mechanical reduction and durability deterioration, and the key to improving the leaching resistance of concrete is to increase the compaction of its microstructure formed by the curing. This paper performs a numerical investigation on the intrinsic relationship between microstructures formed by the hydration of cement and slag and leaching resistance of concrete in water environment. Firstly, a shrinking-core hydration model of blended cement and slag is presented, in which the interaction of hydration process of cement and slag is considered and the microstructure composition is characterized by the hydration products, solution composition and pore structure. Secondly, based on Fick's law and mass conservation law, a leaching model of hardened paste is proposed, in which the multi-species ionic diffusion equation and modified Gérard model are established, and the model is numerically solved by applying the finite difference method. Finally, two models are combined by microstructure composition to form an integrated curing-leaching model, and it is used to investigate the relationship between microstructure composition and leaching resistance of slag-blended cement pastes.

A Study on Early Evaluation Method of Durability of PC Concrete According to the Accelerated Curing Conditions (촉진양생조건에 따른 PC콘크리트의 내구성 조기 평가기법 연구)

  • 김관호;박광수;신수균;이준구;장문기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.169-174
    • /
    • 2002
  • We can consider that the study on early evaluation of compressive strength and durability of concrete is useful to raise safety of quality control of concrete. In this paper, was proposed to method early to predict strength and durability of concrete with parameter, such as Water/cement(W/C) ratio and steam curing conditions. Through analyzing the relationship between the compressive strength and the amount of chloride penetration into concrete specimens, a new formula early estimating durability of the concrete structure was suggested.

  • PDF

Properties of Non-Shrinkage High Strength Concrete (무수축 고강도 콘크리트의 특성)

  • 조일호;민정기;윤준노;김영익;성찬용
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.283-288
    • /
    • 1999
  • This study is performed to evaluate slump , air content, compressive strength and length change ratio of non-shrinkage high strength ocncrete is achieved by 10% expansive additive contained. The length change ration of non-shrinkage high strength concrete which is in water curing, shows 0.055% expansion in 10% expansive additive contained concrete and 0.308 expansion in 20% expansion additive contained concrete when it is curing 28 days.

  • PDF

Method for high temperature curing and strength development of high strength concrete micropores Relationship (고온 양생방법을 이용한 고강도 콘크리트의 미세공극과 강도발현 관계에 대한 연구)

  • Lee, Han Yong;Kim, Seong Deok;Lee, young Do;Myung, Ro Oun;Jung, Sang Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.58-59
    • /
    • 2013
  • In this study, the standard specimen heated to curing experiments and simulation experiments the absence of porosity distribution and the effect on the compressive strength has been investigated.

  • PDF

Mock-up Test of Concrete Using AE Water Reducing Agent of Early-Strength Type in Construction Field (조기강도발현형 AE감수제를 사용한 콘크리트의 현장 Mock-up 실험)

  • 황인성;김기훈;김규동;이승훈;한천구
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.1-4
    • /
    • 2004
  • In this paper. applicability of high early strength type AE water reducing agent(HESAEWA) developed by the authors is discussed by applying Mock-up test. For fresh concrete properties, concrete using existing AE water reducing agent(EAEWRA) and HESAEW A meets the target slump and air content at jobsite. Setting time of concrete using HESAEWA is shorter than that using EAEWRA. Remarkable variance of bleeding and settlement is not observed with type of AE water reducing agent. For hardened concrete properties, use of HESAEW A results in higher strength development compared with that of EAEWRA at standard curing and in field curing condition. Reaching time to accomplish 5MPa of compressive strength. which is possible to remove side form. is taken using HESAEWA earlier than that of EAEWRA by 1day. Therefore, it is confirmed that use of HESAEWA can meet the requirements of general quality of concrete and achieve high early strength development as well as has a desirable field applicability.

  • PDF

Synthesis and characterization of polyamide membrane for the separation of acetic acid from water using RO process

  • Mirfarah, Hesam;Mousavi, Seyyed Abbas;Mortazavi, Seyyed Sajjad;Sadeghi, Masoud;Bastani, Dariush
    • Membrane and Water Treatment
    • /
    • v.8 no.4
    • /
    • pp.323-336
    • /
    • 2017
  • The main challenge in many applications of acetic acid is acid dehydration and its recovery from wastewater streams. Therefore, the performance of polyamide thin film composite is evaluated to separate acetic acid from water. To reach this goal, the formation of polyamide layer on polysulfone support membrane was investigated via interfacial polymerization (IP) of meta-phenylenediamine (MPD) in water with trimesoyl chloride (TMC) in hexane. Also, the effect of synthesis conditions, such as concentration of monomers and curing temperature on separation of acetic acid from water were investigated by reverse osmosis process. Moreover, the separation mechanism was discussed. The solute permeation was carried out under applied pressure of 5 bar at $25^{\circ}C$. Surface properties of TFC membrane were characterized by ATR-FTIR, SEM and AFM. The performance test indicated that 3.5 wt% of MPD, 0.35 wt% of TMC and curing temperature of $75^{\circ}C$ are the optimum conditions. Moreover, the permeate flux was $4.3{\frac{L}{m^2\;h}}$ and acetic acid rejection was about 43% at these conditions.