• Title/Summary/Keyword: Water conductance

Search Result 218, Processing Time 0.023 seconds

Influence of NCG Charging Mass on the Thermal Characteristics of Variable Conductance Heat Pipe with Screen Mesh Wick (스크린 메쉬형 가변전열 히트파이프에서 NCG양에 따른 작동특성 변화)

  • Suh, J.S.;Park, Y.S.;Kang, C.H.;Chung, K.T.;Park, K.H.;Lee, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1400-1405
    • /
    • 2004
  • Experimental study is performed to investigate the effect of heat load and operating temperature on the thermal performance of a heat pipe with screen mesh wick. The heat pipe was designed in 200 screen meshes, 500mm length and 12.7mm O.D tube of copper, water as working fluid(4.8g) and nitrogen as non-condensible gas(NCG). The heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Experimental data of axial wall temperature distribution is presented for heat transport capacity, the temperature of cooling water of condenser, inclination angle, and operating temperature. For the results from this study, it is found that, for the same charging mass of working fluid, the initial operating temperature and the overall wall temperatures of heat pipe are higher for NCG charging mass of $5.0{\times}10^{-6}kg$ and $3.4{\times}10^{-6}kg$, than that of $1.0{\times}10^{-6}kg$.

  • PDF

Post Infection Physiobiochemical Alteration at Various Intensities of Leaf spot (Myrothecium roridum) in Mulberry

  • Kumar, P.M.Pratheesh;Qadri, S.M.H.;Pal, S.C.;Mishra, A.K.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.175-180
    • /
    • 2003
  • Changes in biochemical constituents and physiological alteration were studied in various intensities (1-5%, 6-15%, 16-30%, 31-50% and > 50%) of leaf spot (Myrothecium roridum) on mulberry leaves and compared with healthy leaves. Chlorophyll, total soluble sugar and total protein were decreased (P < 0.01), but total phenol increased due to pathogen infection. Changes in biochemical constituents showed significant correlation with intensity of disease. Chlorophyll ($r^2$= 0.92), and protein (($r^2$= 0.83) possessed negative while phenol (($r^2$= 0.61) possessed positive correlation. Photosynthetic rate, transpiration rate, stomatal conductance, moisture content (%) and physiological water use efficiency (pWUE) were decreased, but stomatal resistance increased in the infected leaves. Physiological parameters also possessed significant (P < 0.01) correlation with disease intensity. Photosynthetic rate (($r^2$= 0.96), transpiration rate ($r^2$=0.88), stomatal conductance (($r^2$= = 0.65), physiological water use efficiency (($r^2$= 0.88) and moisture content (r = 0.85) were negatively but stomatal resistance (($r^2$= 0.75) was positively correlated to disease intensities.

Influence of NCG Charged Mass on the Thermal Performance of VCHP with Screen Mesh Wick (스크린메쉬형 VCHP에서 NCG량에 따른 열전달 성능실험)

  • Park, Young-Sik;Chung, Kyung-Taek;Suh, Jeong-Se
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.689-695
    • /
    • 2008
  • Experimental study has been performed to investigate the influence of non-condensible gas(NCG) charged mass on the thermal performance of a variable conductance heat pipe(VCHP) with screen mesh wick. The VCHP is furnished by screen mesh number 200 for the pipe outer diameter of 12.7mm and the pipe length of 500 mm. The VCHP is filled with water as working fluid of 4.8g and nitrogen as NCG and has evaporator, condenser and adiabatic section, respectively. For the results from experiment, it is found that, for the same charged mass of working fluid, the overall wall temperatures of heat pipe grows up with increasing NCG charged mass. The variation of operating temperature of VCHP reduces with increasing NCG mass. In addition, the profile of axial wall temperature distribution is presented for heat transport capacity of heat pipe, the temperature of cooling water of condenser, inclination angle, and operating temperature.

대전지역 약수의 수질특성과 관리방안

  • 정찬호;김은지;문병진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.15-18
    • /
    • 2001
  • Sixty natural springs and wells used as community facilities for drinking water are developed along mountain climbing way of suburban area and residential area in Daejeon City. In this study, the seasonal variation of their water quality and hydrochemical characteristics were investigated. Some natural springs are vulnerable to bacilli contamination because of their short residence time and shallow circulation in subsurface environment. The waters show hydrochemical types of Ca-HCO$_3$ and Na-HCO$_3$, and are characterized by low electrical conductance and weak acidic pH.

  • PDF

Effects of Water Stress on Leaf Orientation, Apparent Photosynthetic Rate, Transpiration Rate, Yield and Its Related Traits in Soybean Plants (한발조건이 콩식물체의 엽운동, 광합성능, 증산량, 수량 및 관련 형질에 미치는 영향)

  • 천종은;김진호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.4
    • /
    • pp.313-319
    • /
    • 1992
  • To investigate effects of water stress on apparent photosynthetic, transpiration rates, leaf orientation, yield and its related traits, four soybean varieties were planted on the Wagner pots in a plastic house covered with polyethylene film. As the light intensity and leaf temperature in a day increased, the movement of central leaflet in the second leaf of main stem occurred earlier than that of the lateral leaflet. The apparent photosynthetic rate of the central leaflet was higher than that of the lateral leaflet, but light intercept and leaf temperature of lateral leaflet were higher than those of the central leaflet. The apparent photosynthetic rate had highly positive correlation with the photon flux density, stomatal conductance and temperature, respectively. The photon flux density, stomatal conductance, transpiration and photosynthetic rates in the control were significantly higher than those in the water stress plot. The yield and its related traits in the water stress plot became decreased significantly in comparison with the control.

  • PDF

Study on the photosynthetic characteristics of Eutrema japonica (Siebold) Koidz. under the pulsed LEDs for simulated sunflecks

  • Park, Jae Hoon;Kim, Sang Bum;Lee, Eung Pill;Lee, Seung Yeon;Kim, Eui Joo;Lee, Jung Min;Park, Jin Hee;Cho, Kyu Tae;Jeong, Heon Mo;Choi, Seung Se;Park, Hoey Kyung;You, Young Han
    • Journal of Ecology and Environment
    • /
    • v.45 no.1
    • /
    • pp.54-61
    • /
    • 2021
  • Background: The sunfleck is an important light environmental factor for plants that live under the shade of trees. Currently, the smartfarm has a system that can artificially create these sunfleks. Therefore, it was intended to find optimal light conditions by measuring and analyzing photosynthetic responses of Eutrema japonica (Miq.) Koidz., a plant living in shade with high economic value under artificial sunflecks. Results: For this purpose, we used LED pulsed light as the simulated sunflecks and set the light frequency levels of six chambers to 20 Hz, 60 Hz, 180 Hz, 540 Hz, 1620 Hz, and 4860 Hz of a pulsed LED grow system in a plant factory and the duty ratio of the all chambers was set to 30%, 50%, and 70% every 2 weeks. We measured the photosynthetic rate, transpiration rate, stomatal conductance, and substomatal CO2 partial pressure of E. japonica under each light condition. We also calculated the results of measurement, A/Ci, and water use efficiency. According to our results, the photosynthetic rate was not different among different duty ratios, the transpiration rate was higher at the duty ratio of 70% than 30% and 50%, and stomatal conductance was higher at 50% and 70% than at 30%. In addition, the substomatal CO2 partial pressure was higher at the duty ratio of 50% than 30% and 70%, and A/Ci was higher at 30% than 50% and 70%. Water use efficiency was higher at 30% and 50% than at 70%. While the transpiration rate and stomatal conductance generally tended to become higher as the frequency level decreased, other physiological items did not change with different frequency levels. Conclusions: Our results showed that 30% and 50% duty ratios could be better in the cultivation of E. japonica due to suffering from water stress as well as light stress in environments with the 70% duty ratio by decreasing water use efficiency. These results suggest that E. japonica is adapted under the light environment with nature sunflecks around 30-50% duty ratio and low light frequency around 20 Hz.

Molecular Dynamics Simulation Study for Hydroxide Ion in Supercritical Water using SPC/E Water Potential

  • Lee, Song Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2925-2930
    • /
    • 2013
  • We present results of molecular dynamics simulations for hydroxide ion in supercritical water of densities 0.22, 0.31, 0.40, 0.48, 0.61, and 0.74 g/cc using the SPC/E water potential with Ewald summation. The limiting molar conductance of $OH^-$ ion at 673 K monotonically increases with decreasing water density. It is also found that the hydration number of water molecules in the first hydration shells around the $OH^-$ ion decreases and the potential energy per hydrated water molecule also decreases in the whole water density region with decreasing water density. Unlike the case in our previous works on LiCl, NaCl, NaBr, and CsBr [Lee at al., Chem. Phys. Lett. 1998, 293, 289-294 and J. Chem. Phys. 2000, 112, 864-869], the number of hydrated water molecules around ions and the potential energy per hydrated water molecule give the same effect to cause a monotonically increasing of the diffusion coefficient with decreasing water density in the whole water density region. The decreasing residence times are consistent with the decreasing potential energy per hydrated water molecule.

Groundwater Quality and Contamination Characteristics Associated with Land Use in Ulsan Area (울산지역 토지이용도에 따른 지하수 수질 및 오염특성)

  • Lee, Byeong-Dae;Yun, Uk;Sung, Ig-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.6
    • /
    • pp.78-91
    • /
    • 2007
  • The groundwater chemistry is heavily influenced by land use. This study has investigated the groundwater quality and contamination characteristic associated with land use. Contamination index ($C_d$) was estimated for evaluating and areal distribution of groundwater contamination degree. Groundwater samples collected from 216 locations in the study area show great variability in chemical composition. Electrical conductance ranges from 100 to $31,360\;{\mu}S/cm$. The pH values are between 4.6 (acidic) and 8.57 (weak alkaline). The water types predominantly represent the $Ca-HCO_3$ and $Ca-Na-HCO_3$ types, whereas, in the residential and business areas, the water type is shifted to (Na, Ca)-Cl type with rich concentration of Cl. The $C_d$ values of the study area range from 1.1 to 117.6 with a mean of 9.56.

A Study on a Classification Technique of Natural Mineral Waters by Its Constitution and Physico-Chemical Properties (鑛泉水 理化學的 水質評價 技法 에 관한 연구)

  • Nam, Sang-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.1
    • /
    • pp.33-38
    • /
    • 1988
  • Natural mineral water is generally quite different from ordinary drinking water due to its original nature and various properties. The complexity of natural mineral water requires, therefore, not only to identify its nature and proper characteristics, but also to classify them by a reasonable scientific basis of comparison. The study was concentrated on a possible classification technique to natural mineral waters by their constitutions and physico-ehemical properties. The classification was carried out by the computation of such numerical parameters as ionic equivalent percentage, electrolytic conductance or mobility, ionic molecular weight, molecular concentration, equivalent conductivity and degree of ionization in consideration of the determinative criteria as follows -particular single element or molecule -major components of natural waters as bicarbonate, sulphate, chloride,caloride, calcium, magnesium, and sodium -moleculat concentration related to blood osmotic pressure -water temperature at emergence from spring -contents of free carbon dioxide (CO2) -pH value of water -total dissolved solids or salts (NaCl) The results obtained proved out to be clearly distinguhhable from ordinary drinking water as far as concern natural mineral water as an example on the subject -simple water -bicarbonate-predominating water -cold spring -carbonated-non gaseous water -weak alkaline water -non saline water Putting these various results together, the sample turned out to be a kind of natural mineral water that can be used as a drinking water if microbiologically safe.

  • PDF

Ecophysiological Changes in a Cold Tolerant Transgenic Tobacco Plant Containing a Zinc Finger Protein (PIF1) Gene

  • Yun, Sung-Chul;Kwon, Hawk-Bin
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.4
    • /
    • pp.389-394
    • /
    • 2008
  • The ecophysiological changes occurring upon cold stress were studied using cold tolerant transgenic and wild-type tobacco plants. In a previous study, cold tolerance in tobacco was induced by the introduction of a gene encoding the zinc finger transcription factor, PIF1. Gas-exchange measurements including net photosynthesis and stomatal conductance were performed prior to, in the middle of, and after a cold-stress treatment of $1{\pm}2^{\circ}C$ for 96 h in each of the four seasons. In both transgenic and wild-type plants, gas-exchange parameters were severely decreased in the middle of the cold treatment, but had recovered after 2-3 h of adaptation in a greenhouse. Most t-test comparisons on gas-exchange measurements between the two plant types did not show statistical significance. Wild-type plants had slightly more water-soaked damage on the leaves than the transgenic plants. A light-response curve did not show any differences between the two plant types. However, the curve for assimilation-internal $CO_2$ in wild-type plants showed a much higher slope than that of the PIF1 transgenic plants. This means that the wild-type plant is more capable of regenerating Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and has greater electron transport capacity. In conclusion, cold-resistant transgenic tobacco plants demonstrated a better recovery of net photosynthesis and stomatal conductance after cold-stress treatment compared to wild-type plants, but the ecophysiological recoveries of the transgenic plants were not statistically significant.