• Title/Summary/Keyword: Water Rocket

Search Result 139, Processing Time 0.023 seconds

Injection Condition Effects of a Pintle Injector for Liquid Rocket Engines on Atomization Performances (액체로켓 핀틀 인젝터의 분사조건이 미립화 성능에 미치는 영향)

  • Son, Min;Yu, Kijeong;Koo, Jaye;Kwon, Oh Chae;Kim, Jeong Soo
    • Journal of ILASS-Korea
    • /
    • v.20 no.2
    • /
    • pp.114-120
    • /
    • 2015
  • Effects of injection conditions on a pintle injector which is proper to recent liquid rocket engines requiring low cost, low weight, high efficiency and reusability were studied. The pintle injector with a typical moving pintle was used for atmospheric experiment using water and air. Injection pressures of water were considered 0.5 and 1.0 bar, 0.1 to 1.0 bar for injection pressures of air and 0.2 to 1.0 mm for pintle opening distance. Sauter mean diameters (SMD) of spray was measured at 50 mm distance from a pintle tip and SMD was treated as a representative parameter in this study. As a result, because of shape characteristics of the pintle injector, there was a transient region between the pintle opening distances of 0.6 and 0.7 mm and this region affected to mass flow rates and SMDs. Also, Reynolds numbers for gas, Weber numbers and momentum ratios were adopted as major non-dimensional paramters and the momentum ratio has strong correlation with SMD.

Experimental Study on Performance Characteristics of Liquid Rocket Engine (액체로켓엔진의 성능특성 연구)

  • 장행수;이성웅;조용호;우유철
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.211-217
    • /
    • 2003
  • A liquid rocket engine(LRE) Using LO$_2$/LNG(Liquefied Natural Gas) propellants was experimentally evaluated. The purpose of this study was to investigate the performance of the LO$_2$/LNG rocket combustor that is composed of three sect ions(igniter spacer, cylinder and nozzle section), especially focused on the influence of regenerative cool ing effect in association with the phase of regenerative coolant Series of tests were conducted under the conditions of water cool ing and regenerative cool ing with LNG in the cylinder section and independent cool ing with water in the igniter spacer and nozzle sections. Parametric studies on the variation of a chamber pressure and mixture ratio were undertaken. In addition, effect of propellant(LNG) composition and its enthalpy on the performance is examined.

  • PDF

Effects of Injection Pressure on the Spray Performance Characteristics of the 70 N-class Liquid-rocket Engine Injector (분사압력 변이에 따른 70 N급 액체로켓엔진 인젝터의 분무성능특성)

  • Jung, Hun;Kim, Jong-Hyun;Kim, Jeong-Soo;Park, Jeong;Lee, Jae-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.180-186
    • /
    • 2012
  • A water-flow test for acceptance verification is carried out for a nonimpinging-type injector prior to the design-performance verification of 70 N-class liquid-rocket engine under development. It is observed that there exist varying characteristics of atomization among the injector-orifices caused by a fabrication crudeness of orifice holes which can be judged from a microscopic standpoint. The flow shedding phenomenon and ruffle on the surface of liquid column (or droplet) could be caught from the instantaneous spray images.

  • PDF

Hot Test of a Turbopump for a Liquid Rocket Engine (액체로켓엔진용 터보펌프의 고온 성능시험)

  • Hong, Soon-Sam;Kim, Dae-Jin;Kim, Jin-Sun;Kim, Jin-Han
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.12
    • /
    • pp.933-938
    • /
    • 2009
  • Hot test of a full-scale turbopump for a 30-ton-thrust liquid rocket engine was carried out. The turbopump is composed of an oxidizer pump, a fuel pump, and a turbine on a single shaft. Model fluid was used in the test, that is, hot air for the turbine and water for the pumps. The turbopump was operated stably at full speed for 120 seconds. In terms of performance characteristics of pumps and turbine, the results from the turbopump assembly test are compared with those from the turbopump component tests which were performed at about half of the design rotational speed.

Development of a Hydrogen Peroxide Rocket Engine Facility

  • Ahn, Sang-Hee;S. Krishnan;Lee, Choong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.131-136
    • /
    • 2004
  • The ongoing developmental studies on the application of hydrogen peroxide for propulsion are briefly reviewed. A detailed design-study of a laboratory scale facility of a hydrogen peroxide mono-propellant engine of 100-N thrust is presented. For the preparation of concentrated hydrogen peroxide, a distillation facility has been realized. Results of water analogy tests are presented. Initial firings using the concentrated hydrogen peroxide were not successful. Low environmental temperature, low contact area of the catalyst pack, and contamination in the hydrogen peroxide were considered to be the reasons. Addressing the first two points resulted in successful firing of the rocket engine.

  • PDF

Model-Fluid Full-Speed Test of a Turbopump for a 75 Ton Class Rocket Engine (75톤급 로켓엔진용 터보펌프의 실회전수 상사매질 시험)

  • Hong, Soonsam;Kim, Daejin;Kim, Jinhan
    • Journal of Aerospace System Engineering
    • /
    • v.7 no.4
    • /
    • pp.49-54
    • /
    • 2013
  • A turbopump for a 75 ton class liquid rocket engine was tested at full speed for 20 seconds using model fluid. Liquid nitrogen is used for the oxidizer pump, water for the fuel pump, and hot gas for the turbine. The non-cavitating head of pump from the turbopump assembly test showed a good agreement with that from the pump component test. The relative difference of turbine efficiency between the turbopump assembly test and the turbine component test was 0.3% only. Suction performance from the turbopump assembly test was higher than that of pump component test, which resulted from the thermodynamic effect of cavitation.

Study of Internal Flow in the supersonic Nozzle by the Hydraulic Analogy (수력학적 상사를 적용한 초음속 노즐 내부 유동 연구)

  • Lee, Ji-Hyung;Lee, Kyung-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.477-482
    • /
    • 2009
  • Though rocket nozzle flow is very important to the rocket performance, the direct measurement is very difficult because of high temperature and high pressure gas flow. Then the experiment utilizing the hydraulic analogy has been developed for such a problem. Supersonic flows through an axisymmetric De Laval nozzle of solid rocket motor was simulated in a 2-D sluice-type water-table designed and manufactured utilizing hydraulic analogy. Methods to minimize or account for non-analogous effects in the hydraulic system must be reviewed for the quantitative application of the hydraulic analogy. In this application the water table is inclined slightly, so that gravity acceleration has a small component in the direction of motion, thus compensating for the effect of friction. Flow visualization leads to better understanding of the analogous system. Within the experimental errors, it is shown that the hydraulic analogy can be used as an effective tool for the study of two dimensional isentropic flows of gases in many fields.

  • PDF

A Study of Hybrid Rocket for Underwater Operation (수중 운용을 위한 하이브리드 로켓 연구)

  • Woo, KyoungJin;Min, Moonki;Lee, Junghyun;Chu, Bokyoung;Lee, Seunghwan;Kim, Gyeongmin;Kim, Heuijoo;Kim, Jiman;Hwang, Heuiseong;Yoo, Youngjoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.144-147
    • /
    • 2017
  • A hybrid rocket engine capable of thrust throttling and underwater-working was developed for the underwater high-speed vehicle propulsion system. The hybrid rocket engine was designed and made by two types of ground test motor and underwater working motors. An engine performance was verified by the ground tests with the ground test motor and in the case of underwater motors the ground tests and underwater tests were performed. For the underwater operation a two-stage ignition system was adopted and a rupture disc was installed at the end of nozzle for a water-tight just before an ignition. Successful ignition and propulsion were confirmed in the underwater test with the final selected double rupture disc.

  • PDF

Water Tests of Fuel Pump for 75-ton Class Liquid Rocket Engine (75톤급 액체로켓엔진용 연료펌프의 수류시험)

  • Kim, Dae-Jin;Choi, Chang-Ho;Hong, Soon-Sam;Kwak, Hyun-D.;Kim, Jin-Han
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.61-65
    • /
    • 2011
  • A series of water tests of a fuel pump for liquid rocket engines are performed at a room temperature. According to the test results, the head coefficient of the pump follows the conventional similarity rule - unlike this, the pump shows better efficiency with higher rotational speed. Also, it is found that the pressure at the rear bearing outlet is higher than expected because the inlet of bypass pipe line is narrow. Furthermore, the cavitation performance of the fuel pump is found to be sufficient for the engine operation and is better at the lower flow ratio and higher rotational speed.

The Cooling Performance of Thrust Chamber with Film Cooling (막냉각에 따른 추력실의 냉각 성능)

  • Kim, Sun-Jin;Jeong, Hae-Seung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.1 s.24
    • /
    • pp.117-124
    • /
    • 2006
  • Experiments on film cooling were performed with a small scale rocket engine homing liquid oxygen (LOx) and Jet A-1(jet engine fuel). Film coolants(Jet A-1 and water) were injected through the film cooling injector. Film cooled length and the outside wall temperature of the combustor were determined for chamber pressure, and the different geometries(injection angle) with the flow rates of film coolant. The loss of characteristic velocity due to film cooling was determined for the case of film cooling with water and Jet A-1. As the coolant flow increases, the outside wall temperatures decrease but the decrease in the outside wall temperatures reduced over the 8 percent film coolant flow rate. The efficiency of characteristic velocity was decreased with the Increase of the film coolant flow rate.