• Title/Summary/Keyword: Water Quality by Flow Condition

Search Result 100, Processing Time 0.033 seconds

Constructing the Operating Information System(OIS) and Improving the Water Quality by OIS in Water Treatment Plants (수도시설 운영정보화 시스템 구축 및 효율개선효과)

  • Oh, Jung-Woo;Song, Yoon-Seob;Kang, Geum-Bai;Yoo, Man-Sik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.6
    • /
    • pp.699-705
    • /
    • 2007
  • In this study, the improvement of the operation condition and the water quality in water treatment plant by operating information system(OIS) was evaluated for Ansan water treatment plant. The average flow rate of raw water in the year 2005(after constructing the OIS) appeared 15.6 % lower than that in the year 2004(before constructing the OIS). The mean value(12.37 NTU) of raw water turbidity in the year 2005 remained constant, or nearly so with that(12.06 NTU) in the year 2004. The average dosing rates of coagulant appeared 12.06 mg/L in the year 2005 which was higher than 10.31 mg/L in the year 2004. Furthermore, the average turbidity concentration of fresh water in the year 2005 appcared slightly better than that in the year 2004. From $COD_{Mn}$ and BOD concentration of raw water, the water quality in the year 2005 were better than those in the year 2004. The average concentration of $KMnO_4$ in the year 2004 and the year 2005 was 2.95 mg/L and 1.25 mg/L, respectively, and the average concentration of THMs in the year 2004 and the year 2005 appeared 0.038 mg/L and 0.025 mg/L, respectively. Therefore, the fresh water quality in the year 2005 was better than that in the year 2004. In this study, it is considered that the operation of Ansan water treatment plant may be optimized by OIS, and thus the OIS may be very useful method to improve the water quality.

A Study of Design Conditions for Decision Area of Constructed Wetland to treat Nonpoint Source Pollution from Agricultural Area (농촌유역 비점오염원처리를 위한 적정 인공습지 규모결정에 관한 연구(지역환경 \circled1))

  • 장정렬;박종민;권순국;윤경섭
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.490-499
    • /
    • 2000
  • Several studies on development of water quality treatment systems by wetlands are on going because of their benefits of low construction cost and high efficiency of waste water treatment. The objectives of this study were to review the necessary contents of survey and design factors for constructing constructed wetlands and to examine the required wetland area to treat non-point source pollution through case studies. The measurement of water quality and quantity in precipitation period is needed to analyse the inflow characteristics of the non-point pollution and to determine the amount of design flow. The design inflow for constructing constructed wetland was determined to the total runoff from 30mm of daily rainfall in the AMC(III) condition of the SCS method and is similar 70% of the annual mean runoff. The natural type wetland system with 0.1m of water depth and 5 hours of detention time was applied. From the results of the case studies, 70% of inflow could be treated and 1∼3% of wetland area of the total basin is needed.

  • PDF

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF

Evaluation on Chemical Cleaning Efficiency of Fouled in $1,000,000m^3/day$ Sea Water Reverse Osmosis Membrane Plant (해수용 역삼투막을 이용한 $1,000,000m^3/day$ 규모의 플랜트에서 오염된 막의 화학세정 효율 평가)

  • Park, Jun-Young;Kim, Ji-Hoon;Jeong, Woo-Won;Nam, Jong-Woo;Kim, Young-Hoon;Lee, Eui-Jong;Lee, Yong-Soo;Jeon, Min-Jung;Kim, Hyung-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.285-291
    • /
    • 2011
  • Membrane fouling is an unavoidable phenomenon and major obstacle in the economic and efficient operation under sea water reverse osmosis (SWRO). When fouling occurs on the membrane surface, the permeate quantity and quality decrease, the trans-membrane pressure (TMP) and operation costs increase, and the membrane may be damaged. Therefore, chemical cleaning process is important to prevent permeate flow from decreasing in RO membrane filtration process. This study focused on proper chemical cleaning condition for Shuaibah RO plant in Saudi Arabia. Several chemical agents were used for chemical cleaning at different contact time and concentrations of chemicals. Also autopsy analysis was performed using LOI, FT-IR, FEEM, SEM and EDX for assessment of fouling. Specially, FEEM analysis method was thought as analyzing and evaluating tool available for selection of the first applied chemical cleaning dose to predict potential organic fouling. Also, cleaning time should be considered by the condition of RO membrane process since the cleaning time depends on the membrane fouling rate. If the fouling exceeds chemical cleaning guideline, to perfectly remove the fouling, certainly, the chemical cleaning is increased with membrane fouling rate influenced by raw water properties, pre-treatment condition and the point of the chemical cleaning operation time. Also choice of cleaning chemicals applied firstly is important.

Assessment of Ecological Health of the Namcheon Stream using Epilithic Diatoms (부착규조를 이용한 남천의 하천 생태 건강도 평가)

  • Jeong, Ae-Suk;Jang, Seong-Hyun;Lee, Jung-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.970-979
    • /
    • 2012
  • The purpose of study was to analyze the ecological health of the Namcheon Stream using Index of Biotic Integrity(IBI) Qualitative Habitate Evaluation Index(QHEI) and Water quality condition. Diatom samples were collected from ten sampling sites in the stream at total four times in 2006 and 2007. To assess ecological health of the stream, it was used modify metrics proposed by USEPA(1999). IBI values of the stream averaged 23 which was judged as a "fair". Physical habitate evaluation analysis showed that QHEI values in the stream averaged 57 indicating a "poor" condition. Water quality condition in the stream averaged "II" indicating a "a little good" condition In conclusion, ecological health of the Namcheon Stream was "fair" condition that means habitate minimally disturb in the aquatic environment and relatively good water quality. Especially, St. 6 St. 7, St. 8, and St. 9 showed that QHEI values in the stream averaged 47 indicating a "poor" condition. St. 6 exists mostly to interfere with the flow of the river piers and artificial beams around. They are also serious disturbance at riverbed structure in aquatic ecosystems. St. 10 was good about habitate condition however, it was disturbance of aquatic ecosystems due to nutrient. It is suggest that St. 10 needs to be managed for nutrient inflows.

A study on water quality change by land use change using HSPF

  • Kim, Tae Geun;Choi, Kyoung-sik
    • Environmental Engineering Research
    • /
    • v.25 no.1
    • /
    • pp.123-128
    • /
    • 2020
  • Non-point source pollutant load reductions were calculated using the Hydrologic Simulation Program-Fortran (HSPF) model under the assumption that landuse pattern was changed according to land purchases. Upon the simulation of non-point pollutant and areas with high land purchase ratios to select a buffer zone, the Namgang dam Reach 11, Imha dam Reach 10, and the Reach 136 watershed of the main river were found to rank high for the construction of buffer zones. Assuming that the forms of the purchased lands were changed to wetlands, biological oxygen demand (BOD) loads were changed through the HSPF model. No changes of BOD were present in the Namgang dam and the Imha dam watersheds. BOD loads in Reach 136 according to landuse change were analyzed through a flow duration analysis based on the total maximum daily loads of the United States. The flow duration analyses undertaken to examine changes in BOD of main river Reach 136 watershed indicated a shift of 0.64 kg/d from 3.16 to 2.52 during high flow. The change of BOD under the conditions of moist, mid-range and dry were 11.9%, 9% and 4.5%. At the low flow condition, the variation range in the BOD load was from 0.58 kg/d to 0.41 kg/d.

Constructed Wetland Design Method to Treat Agricultural Drainage from Tidal Reclaimed Paddy Areas (간척지 논 농업배수 처리에 적합한 인공습지 설계 기법)

  • Jang, Jeong-Ryeol;Shin, Yu-Ri;Jung, Ji-Yeon;Choi, Kang-Won
    • KCID journal
    • /
    • v.18 no.1
    • /
    • pp.4-17
    • /
    • 2011
  • The standard design methodology was suggested to construct wetland system for reducing non-point source pollution from Saemangeum reclaimed paddy land. To set for the design flow and concentrations, runoff and water quality survey were conducted during the irrigation period in 2008 at Gyehwa reclaimed paddy land located at near Saemangeum lake. It is rational that 1ha is the optimum constructed wetland size. To meet this size, the moderate drainage area of reclaimed paddy field was 50ha under the conditions that rainfall is 30mm, average runoff coefficient is 0.83, and runoff capture ratio is 0.6. At these condition, the runoff volume from 50ha was 10,520 $m^3/d$ including base flow during irrigation period. To select the optimum wetland system, several case studies were conducted by focusing on the tidal reclaimed land areas having wetland systems in Seokmun. Pond-Wetland system was selected as the standard model because of showing the highest reduction efficiency. Single variable regression equation were delivered to estimate effluent water concentrations from the designed wetland by using long-term monitoring data from the Seokmun experiment site. The effluent concentration from the designed wetland using these equation were showed moderately range.

  • PDF

Hydrologic and Water Quality Responses to Precipitation Extremes in Nakdong River Basin (이상기후변화가 낙동강 유역의 수문·수질요소에 미치는 영향)

  • Jang, Jae Ho;Ahn, Jong Ho
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.11
    • /
    • pp.1081-1091
    • /
    • 2012
  • SWAT model is applied to simulate rainfall-runoff and pollutant loadings in the Nakdong River basin as the condition for extreme droughts and floods. The year 1994 and 2002 are chosen as the drought and flood year, respectively, through the analysis of past rainfall data for 30 years. The simulation results show decreases in both runoff and pollutant loadings for the drought year but increases for the flood year. However, the pollutant loadings on some upper sub-basins increase for drought year due to highly-regulated dam discharge and soil moisture change. Collectively, extreme droughts and floods have negative impacts on water quality, showing elevated SS loadings during wet season and concentrated T-P concentrations during low flow season. The extent of these impacts is highly influenced by antecedent dry days and precipitation patterns.

Effects of Habitat Changes Caused by Localized Heavy Rain on the Distribution of Benthic Macroinvertebrates (집중호우에 의한 서식지변동이 저서성 대형무척추동물의 분포에 미치는 영향)

  • Kim, Hyoung-Gon;Yoon, Chun-Sik;Cheong, Seon-Woo
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.689-699
    • /
    • 2018
  • The changes on community structures of benthic macroinvertebrates, relevance to the environment and interrelationship between benthos were studied over two years in stream with large environmental disturbance, which caused by localized heavy rain during Typhoon Chaba in October 2016. As a result, the number of species and individuals were increased after localized heavy rain, especially numbers of individuals of Ephemeroptera and Plecoptera were greatly increased. On the contrary, those of Semisulcospira libertina and Semisulcospira forticosta of Mesogastropoda were greatly decreased. Dominant species was Baetis fuscatus of Ephemeroptera, numbers of species and individuals of Ephemeroptera, Plecoptera and Trichoptera(EPT group) were dramatically increased from 26 species, 110 individuals to 32 species, 365 individuals respectively. This suggests that the change of river bed and flow velocity due to heavy rain provided a suitable environment for the EPT group that preferred the rift of a stream. In the functional feeding group, only gathering collectors and filtering collectors were identified in autumn of 2017 because some functional groups preferentially adapted to the changed environment. The interspecific competition and environmental condition were the worst in autumn after heavy rain due to the increase individuals of some species. The ecological score of benthic macroinvertebrate community(ESB) was higher after the heavy rain than before. Results of the Group Pollution Index(GPI), Korean Saprobic Index(KSI) and Benthic Macroinvertebrate Index(BMI) were similar to those before and after heavy rainfall. Therefore, ESB was the most discriminating method for estimating the biological water quality in this study. Some species that are sensitive to water quality changes still appear or increase individuals in the area under investigation after the heavy rain. On the other hand, the individuals of some pollutant species decreased. This is thought to be because the habitat fluctuation caused by heavy rainfall has improved the water environment.

Analysis of flow rate-SS discharges characteristics and causes during rainfall season in Daegi-cheon Watershed (대기천 유역에서의 강우기 유량-SS배출 특성 및 원인분석 연구)

  • Kim, Jonggun;Lee, Suin;Park, Byeongki;Won, Chulhee;Kum, Donghyuk;Choi, Joongdae
    • Journal of Wetlands Research
    • /
    • v.21 no.1
    • /
    • pp.9-15
    • /
    • 2019
  • The Daegi-cheon watershed is located in the upper part of the Han River, which has the representative highland vegetable growing complexes. This watershed has a large impact on the water quality and aquatic ecosystem in the upstream of the Han River by discharging a large amount of turbid water during rainfall season. For proposing an efficient turbid water management and policy, the analysis of the characteristics of flow rate and SS and its causes needs to be carried out preferentially. In this study, the relationship between flow rate and SS concentration was analyzed in the Daegi-cheon watershed, and in turn the turbidity characteristics were analyzed. As a result of the study, in the normal flood flow condition, it was shown that SS concentration changed arbitrarily due to various environmental factors. On the other hand, the SS concentration was considerably high in the very high flow condition. Based on the field survey, this could be the reason why the effects of the steep valley and slope collapse according to the very high flow rate as well as the source in the agricultural fields were greatly contributed. Therefore, it is necessary to develop a structural best management practice that can stabilize the steep slope and reduce river bed loss along with the typical source managements plans.