• 제목/요약/키워드: Water Hydraulics

검색결과 232건 처리시간 0.031초

DEVELOPMENT OF THE SPACE CODE FOR NUCLEAR POWER PLANTS

  • Ha, Sang-Jun;Park, Chan-Eok;Kim, Kyung-Doo;Ban, Chang-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제43권1호
    • /
    • pp.45-62
    • /
    • 2011
  • The Korean nuclear industry is developing a thermal-hydraulic analysis code for safety analysis of pressurized water reactors (PWRs). The new code is called the Safety and Performance Analysis Code for Nuclear Power Plants (SPACE). The SPACE code adopts advanced physical modeling of two-phase flows, mainly two-fluid three-field models which comprise gas, continuous liquid, and droplet fields and has the capability to simulate 3D effects by the use of structured and/or nonstructured meshes. The programming language for the SPACE code is C++ for object-oriented code architecture. The SPACE code will replace outdated vendor supplied codes and will be used for the safety analysis of operating PWRs and the design of advanced reactors. This paper describes the overall features of the SPACE code and shows the code assessment results for several conceptual and separate effect test problems.

DEVELOPMENT AND VALIDATION OF COUPLED DYNAMICS CODE 'TRIKIN' FOR VVER REACTORS

  • Obaidurrahman, K.;Doshi, J.B.;Jain, R.P.;Jagannathan, V.
    • Nuclear Engineering and Technology
    • /
    • 제42권3호
    • /
    • pp.259-270
    • /
    • 2010
  • New generation nuclear reactors are designed using advanced safety analysis methods. A thorough understanding of different interacting physical phenomena is necessary to avoid underestimation and overestimation of consequences of off-normal transients in the reactor safety analysis results. This feature requires a multiphysics reactor simulation model. In this context, a coupled dynamics model based on a multiphysics formulation is developed indigenously for the transient analysis of large pressurized VVER reactors. Major simplifications are employed in the model by making several assumptions based on the physics of individual phenomenon. Space and time grids are optimized to minimize the computational bulk. The capability of the model is demonstrated by solving a series of international (AER) benchmark problems for VVER reactors. The developed model was used to analyze a number of reactivity transients that are likely to occur in VVER reactors.

Study on relations between porosity and damage in fractured rock mass

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.15-24
    • /
    • 2015
  • The porosity is often regarded as a linear function of fluid pressure in porous media and permeability is approximately looked as constants. However, for some scenarios such as unconsolidated sand beds, abnormal high pressured oil formation or large deformation of porous media for pore pressure dropped greatly, the change in porosity is not a linear function of fluid pressure in porous media, and permeability can't keep a constant yet. This paper mainly deals with the relationship between the damage variable and permeability properties of a deforming media, which can be considered as an exploratory attempt in this field.

A new approach to the stabilization and convergence acceleration in coupled Monte Carlo-CFD calculations: The Newton method via Monte Carlo perturbation theory

  • Aufiero, Manuele;Fratoni, Massimiliano
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1181-1188
    • /
    • 2017
  • This paper proposes the adoption of Monte Carlo perturbation theory to approximate the Jacobian matrix of coupled neutronics/thermal-hydraulics problems. The projected Jacobian is obtained from the eigenvalue decomposition of the fission matrix, and it is adopted to solve the coupled problem via the Newton method. This avoids numerical differentiations commonly adopted in Jacobian-free Newton-Krylov methods that tend to become expensive and inaccurate in the presence of Monte Carlo statistical errors in the residual. The proposed approach is presented and preliminarily demonstrated for a simple two-dimensional pressurized water reactor case study.

MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

  • Kelly, Daniel J. III;Kelly, Ann E.;Aviles, Brian N.;Godfrey, Andrew T.;Salko, Robert K.;Collins, Benjamin S.
    • Nuclear Engineering and Technology
    • /
    • 제49권6호
    • /
    • pp.1326-1338
    • /
    • 2017
  • The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of $0.99994{\pm}6.8E-6$ (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

An Experimental Study of Backwater Effects Caused by the Covered Reach of Urban Streams

  • Yoon, Yong-Nam;Ahn, Jae-Hyun;Kim, Jin-Kwan
    • Korean Journal of Hydrosciences
    • /
    • 제8권
    • /
    • pp.19-30
    • /
    • 1997
  • The hydraulics of flow within the covered reach of urban streams is very complicated due to the accumulation and interference effect of eddies around the multipli piers supporting the covering slab. An extensive experimental study is done to quantitatively estimate the backwater rise effect caused by various arrays of multiple piers. The factors governing the backwater rise are found out to be the contraction ratio due to the piers. Foude number of the flow, longitudinal pier spacing, and the length of the covered reach. For a single section of lateral pier arralyzed and a multiple regression equation derived. The effect of multiple piers, arrayed in both lateral and longitudinal directions. on the backwater rise is analyzed in terms of the contraction ratio. Froude number, longitudinal pier spacing and the total length of the covered reach. A multiple regression equation for the backwater rise estimation is proposed based on the experimental data collected in this study.

  • PDF

주급수 유량의 형상 분류 및 추정 모델에 대한 연구 (A Study of the Feature Classification and the Predictive Model of Main Feed-Water Flow for Turbine Cycle)

  • 양학진;김성근;최광희
    • 에너지공학
    • /
    • 제23권4호
    • /
    • pp.263-271
    • /
    • 2014
  • 터빈 사이클의 성능 상태량을 결정하기 위한 보정 열 성능 분석은 발전소의 향상된 경제성 운전을 위해 요구된다. 본 연구에서는 유용하고 정확한 성능 분석을 위해서 산업 표준인 ASME PTC를 기분으로 하여 성능 데이터를 사용하여 주급수 유량의 영역별 판정 알고리듬을 개발하고 각 영역별 추정 알고리즘을 개발하였다. 추정 알고리즘은 측정 상태량의 상관관계를 기반으로 형상 분류를 제시하고, 이를 기반으로 서포트 벡터 머신 모델링을 이용하여 추정 모델을 구성하였으며, 서포트 벡터 머신 모델링의 우수성을 검증하기 위하여 신경 회로망 모델, 커널 회귀 모델과 비교하였다. 주급수 유량의 형상 분류 및 추정 모델은 터빈 사이클에서 정확한 보정 열 성능 분석을 제공함으로써 향상된 성능 분석에 기여할 것이다.

하천형 호수인 팔당호의 인 수지 (Phosphorus Budget of a River Reservoir, Paldang)

  • 공동수
    • 한국물환경학회지
    • /
    • 제34권3호
    • /
    • pp.270-284
    • /
    • 2018
  • Paldang is a river reservoir located in the Midwest of Korea, with a water volume of $244{\cdot}10^6m^3$ and a water surface area of $36.5km^2$. It has eutrophied since the construction of a dam at the end of 1973, and the phosphorus concentration has decreased since 2001. Average hydraulic residence time of the Paldang reservoir is about 10 days during the spring season and 5.6 days as an annual level. The hydraulics and water quality of the reservoir can differ greatly, both temporally and spatially. For the spring period (March to May) in 2001 ~ 2017, the reservoir mean total phosphorus concentration calculated from the budget model based on a plug-flow system (PF) and a continuous stirred-tank reaction system (CSTR) was 13 % higher and 10 % lower than the observed concentration, respectively. A composite flow system (CF) was devised by assuming that the transition zone was plug flow, and that the lacustrine zone was completely mixed. The mean concentration calculated from the model based on CF was not skewed from the observed concentration, and showed just 6 % error. The retention coefficient of the phosphorus derived from the CF was 0.30, which was less than those of the natural lakes abroad or river reservoirs in Korea. The apparent settling velocity of total phosphorus was estimated to be $93m\;yr^{-1}$, which was 6 ~ 9 times higher than those of foreign natural lakes. Assuming CF, the critical load line for the total phosphorus concentration showed a hyperbolic relation to the hydraulic load in the Paldang reservoir. This is different from the previously known straight critical load line. The trophic state of the Paldang reservoir has recently been estimated to be mesotrophic based on the critical-load curve of the phosphorus budget model developed in this study. Although there is no theoretical error in the newly developed budget model, it is necessary to verify the validity of the portion below the inflection point of the critical-load curve afterwards.

펌프 가압식 추진제 공급유로에서의 오리피스 개도에 따른 동적 수력특성 변화 (The Dynamic Characteristics of Pump-fed Hydraulics due to Different Diameter Ratios of the Plate Orifice)

  • 김형민;고태호;김상민;윤웅섭
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2009년도 제33회 추계학술대회논문집
    • /
    • pp.313-317
    • /
    • 2009
  • 액체추진제로켓엔진의 추진제 공급유로 내 압력보정을 목적으로 설치된 오리피스는 엔진의 시동 및 정지시, 압력파를 발생시키는 원인이 되며 압력파로 인한 저주파 불안정을 막기 위해서는 오리피스의 개도에 따른 동특성의 변화를 살펴볼 필요가 있다. 오리피스의 동특성 변화를 확인하기 위해 오리피스 공급 압력을 급격하게 증가하도록 하였고 오리피스의 개도를 바꿔가며 동적인 압력변화를 측정하였다. 오리피스의 개도가 증가함에 따라 오리피스에 의한 수격현상은 감소하였으며 오리피스 하류의 수력학적 영향이 지배적으로 나타나는 것을 확인하였다.

  • PDF

자연형 호안공법을 적용한 소하천의 수리특성 분석 (Analysis of Hydrodynamic Characteristics Apply to Nature-Friendly Stream Protection Method)

  • 이강석;박종화;연규방
    • 한국관개배수논문집
    • /
    • 제17권2호
    • /
    • pp.71-81
    • /
    • 2010
  • Stream Pilot Project, which began in May 2003 and finished in December 2003, was selected to develop effective methods applicable to nature-like streams. Stream restoration projects aim to maintain or increase ecosystem goods and services while protecting downstream and coastal ecosystems. Fields environmental monitoring such as flow discharge and precipitation were conducted along the Idong stream for amount of channel zone change in 2007. This study selected three monitoring positions to measure the water level and discharge of flowing water. A stage-discharge relation is obtained from direct discharge measurements for three stations by fitting an empirical relationship to the data set. Since discharge measures are made only for low flow conditions, a curve of discharge against stage can then be built by fitting these data with a power curve. And this study used data obtained from floodmark checkup as well as HEC-RAS model to analyze the hydrodynamic characteristics of monitoring sites. Reach-averaged hydraulic parameters for the supply reach were calculated from the small area's HEC-RAS model for Idong stream, and a HEC-RAS model used to analyze hydraulics for a period in 2007, after the stream was considered bank stabilization.

  • PDF