DOI QR코드

DOI QR Code

MC21/CTF and VERA multiphysics solutions to VERA core physics benchmark progression problems 6 and 7

  • Kelly, Daniel J. III (Bechtel Marine Propulsion Corporation) ;
  • Kelly, Ann E. (Bechtel Marine Propulsion Corporation) ;
  • Aviles, Brian N. (Bechtel Marine Propulsion Corporation) ;
  • Godfrey, Andrew T. (Oak Ridge National Laboratory) ;
  • Salko, Robert K. (Oak Ridge National Laboratory) ;
  • Collins, Benjamin S. (Oak Ridge National Laboratory)
  • Received : 2017.05.30
  • Accepted : 2017.07.11
  • Published : 2017.09.25

Abstract

The continuous energy Monte Carlo neutron transport code, MC21, was coupled to the CTF subchannel thermal-hydraulics code using a combination of Consortium for Advanced Simulation of Light Water Reactors (CASL) tools and in-house Python scripts. An MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 6 demonstrated good agreement with MC21/COBRA-IE and VERA solutions. The MC21/CTF solution for VERA Core Physics Benchmark Progression Problem 7, Watts Bar Unit 1 at beginning of cycle hot full power equilibrium xenon conditions, is the first published coupled Monte Carlo neutronics/subchannel T-H solution for this problem. MC21/CTF predicted a critical boron concentration of 854.5 ppm, yielding a critical eigenvalue of $0.99994{\pm}6.8E-6$ (95% confidence interval). Excellent agreement with a VERA solution of Problem 7 was also demonstrated for integral and local power and temperature parameters.

Keywords

References

  1. B.N. Aviles, D.J. Kelly III, D.L. Aumiller, D.F. Gill, B.W. Siebert, A.T. Godfrey, B.S. Collins, R.K. Salko, MC21/COBRA-IE and VERA-CS multiphysics solutions to VERA core physics benchmark problem #6, Progr. Nucl. Energy (2017), http://dx.doi.org/10.1016/j.pnucene.2017.05.017.
  2. D.J. Kelly III, B.N. Aviles, P.K. Romano, B.R. Herman, N.E. Horelik, B. Forget, Analysis of select BEAVRS PWR Benchmark Cycle 1 Results using MC21 and OpenMC, Proc. PHYSOR 2014, Kyoto, Japan, September 28-October 3, 2014, American Nuclear Society (CD-ROM).
  3. N. Guilliard, W. Bernnat, J. Lapins, I. Pasichnyk, Y. Perin, K. Velkov, W. Zwermann, Analysis of large core neutronics by the Monte Carlo method coupled with thermal hydraulics, Proc. PHYSOR 2016, Sun Valley, Idaho, May 1-5, 2016, American Nuclear Society (CD-ROM).
  4. M.Daeubler,A. Ivanov, B.L. Sjenitzer, V. Sanchez, R. Stieglitz, R.Macian-Juan, Highfidelity coupled Monte Carlo neutron transport and thermal-hydraulic simulations using Serpent 2/SUBCHANFLOW, Ann. Nucl. Energy 83 (2015) 352-375. https://doi.org/10.1016/j.anucene.2015.03.040
  5. A. Ivanov, V. Sanchez, R. Stieglitz, K. Ivanov, Large-scale Monte Carlo neutron transport calculations with thermal-hydraulic feedback, Ann. Nucl. Energy 84 (2015) 204-219. https://doi.org/10.1016/j.anucene.2014.12.030
  6. D.F. Gill, D.P. Griesheimer, D.L. Aumiller, Numerical methods in coupled Monte Carlo and thermal-hydraulic calculations, Nucl. Sci. Eng. 185 (2017) 194-205. https://doi.org/10.13182/NSE16-3
  7. J. Leppanen, V. Hovi, T. Ikonen, J. Kurki, M. Pusa, V. Valtavirta, T. Viitanen, The numerical multi-physics project (NUMPS) at VTT technical research centre of Finland, Ann. Nucl. Energy 84 (2015) 55-62. https://doi.org/10.1016/j.anucene.2014.10.014
  8. A. Bennett, M. Avramova, K. Ivanov, Coupled MCNP/CTF code: development, testing, and application, Ann. Nucl. Energy 96 (2016) 1-11. https://doi.org/10.1016/j.anucene.2016.05.008
  9. M. Pecchia, C. Parisi, F. D'Auria, O. Mazzantini, Application of MCNP for predicting power excursion during LOCA in Atucha-2 PHWR, Ann. Nucl. Energy 85 (2015) 271-278.
  10. M. Ellis, D. Gaston, B. Forget, K. Smith, Preliminary coupling of the Monte Carlo Code OpenMC and the multiphysics object-oriented simulation environment for analyzing Doppler feedback in Monte Carlo simulations, Nucl. Sci. Eng. 185 (2017), 194-193. https://doi.org/10.13182/NSE16-3
  11. D. Kotlyar, E. Shwageraus, Sub-step methodology for coupled Monte Carlo depletion and thermal hydraulic codes, Ann. Nucl. Energy 96 (2016) 61-75. https://doi.org/10.1016/j.anucene.2016.05.032
  12. H. Lee, W. Kim, P. Zhang, A. Khassenov, J. Park, J. Yu, S. Choi, H.S. Lee, D. Lee, Preliminary Simulation Results of BEAVRS Three-Dimensional Cycle 1 Wholecore Depletion by UNIST Monte Carlo Code MCS, Proc. M&C 2017, Jeju, Republic of Korea, April 16-April 20, 2017, American Nuclear Society (CDROM).
  13. M. Lemaire, H. Lee, N. Tak, H.-C. Lee, D. Lee, Monte Carlo/thermal-fluids coupled calculations for MHTGR-350MW Benchmark, Proc.M&C 2017, Jeju, Republic of Korea, April 16-April 20, 2017, American Nuclear Society (CD-ROM).
  14. S. Liu, G. Wang, J. Liang, F. Yang, Z. Chen, X. Guo, Q. Wu, J. Guo, Y. Qiu, X. Tang, Z. Li, K. Wang, RMC capability of multi-cycle HFP full core burnup simulation, Proc. M&C 2017, Jeju, Republic of Korea, April 16-April 20, 2017, American Nuclear Society (CD-ROM).
  15. D.P. Griesheimer, D.F. Gill, B.R. Nease, T.M. Sutton, M.H. Stedry, P.S. Dobreff, D.C. Carpenter, T.H. Trumbull, E. Caro, H. Joo, D.L. Millman, MC21 v.6.0-A continuous-energy Monte Carlo particle transport code with integrated reactor feedback capabilities, Ann. Nucl. Energy 82 (2015) 29-40. https://doi.org/10.1016/j.anucene.2014.08.020
  16. R. Salko, M. Avramova, CTF Theory Manual, Reactor Dynamics and Fuel Management Group, Pennsylvania State University, 2014.
  17. M. Sieger, VERA 3.3 Release Notes, CASL Technical Report: CASL-U-2015-0042-000, 2015.
  18. B. Kochunas, D. Jabaay, S. Stimpson, A. Graham, T. Downar, B. Collins, K.S. Kim, W. Wieselquist, K. Clarno, J. Gehin, VERA Core Simulator Methodology for PWR Cycle Depletion, CASL Technical Report: CASL-U-2015-0155-000, 2015.
  19. A. Godfrey, VERA Core Physics Benchmark Progression Problem Specifications, Revision 4, CASL Technical Report: CASL-U-2012-0131-004, 2014.
  20. D.L. Aumiller, G.W. Swartele, M.J. Meholic, L.J. Lloyd, F.X. Buschman, COBRAIE: A New Sub-channel Analysis Code, Proc. NURETH-16, Chicago, Illinois, August 30-September 4, 2015, American Nuclear Society (2015) (CD-ROM).
  21. S. Palmtag, A. Godfrey, VERA Common Input User Manual, CASL Technical Report: CASL-U-2014-0014-002, 2014.
  22. D.J. Kelly III, T.M. Sutton, T.H. Trumbull, P.S. Dobreff, MC21 Monte Carlo analysis of the Hoogenboom-Martin Full-Core PWR Benchmark Problem, Proc. PHYSOR 2010, Pittsburgh, Pennsylvania, May 9-May 14, 2010, American Nuclear Society (2010) (CD-ROM).
  23. R. Salko, Development of CTF Capability for Modeling Reactor Operating Cycles with Crud Growth, CASL Technical Report: CASL-U-2014-0188-000, 2014. J. GLEASON, Format for a Report, ANS-2008, American Nuclear Society, 2008.

Cited by

  1. EFFICIENT MULTIPHYSICS ITERATIONS IN MPACT WITH PARTIALLY CONVERGENT CMFD vol.247, pp.None, 2021, https://doi.org/10.1051/epjconf/202124706039
  2. A Code-Agnostic Driver Application for Coupled Neutronics and Thermal-Hydraulic Simulations vol.195, pp.4, 2017, https://doi.org/10.1080/00295639.2020.1830620
  3. A Robust, Relaxation-Free Multiphysics Iteration Scheme for CMFD-Accelerated Neutron Transport k-Eigenvalue Calculations-I: Theory vol.195, pp.11, 2017, https://doi.org/10.1080/00295639.2021.1906585
  4. A Robust, Relaxation-Free Multiphysics Iteration Scheme for CMFD-Accelerated Neutron Transport k-Eigenvalue Calculations-II: Numerical Results vol.195, pp.11, 2017, https://doi.org/10.1080/00295639.2021.1906586
  5. Efficient MC–CMFD multiphysics vol.165, pp.None, 2017, https://doi.org/10.1016/j.anucene.2021.108773