• Title/Summary/Keyword: Water Flow Test

Search Result 1,410, Processing Time 0.027 seconds

A Behavior of Clayey Foundation Using Elasto-plastic Constitutive Model - On the Lade's Model, Cubical Triaxial Test and the Determination of Soil Parameters- (탄.소성구성식에 의한 점토지반의 거동해석 (I) -Lade의 모델, 입방체 삼축시험 및 토질매개변수 결정-)

  • 이문수;이광동;오재화
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.4
    • /
    • pp.106-118
    • /
    • 1993
  • The purpose of this study is to develop a multireservoir water balance model which may be used to evaluate rural water demands such as agricultural water, domestic water, industrial water and livestock water and to determine effective storage of reservoir. The model was verified to compare the observed reservoir release data with the simulated reservoir release data of the existing Munsan and Dongbu reservoirs located in the Gisan rural district for 3 years('87~'89). For model application, the effective storages of existing reservoirs(Munsan & Dongbu) were evaluated for 10-year frequency drought and that of newly planned reservoirs(Kumbok & Kudong) were determined for 10-year frequency drought. In addition, the behavior of effective storages for existing reservoirs were analyzed in the case of introducing new reservoirs in the existing system.

  • PDF

Air-Water Countercurrent Flow Limitation in a Horizontal Pipe Connected to an Inclined Riser

  • Kang, Seong-Kwon;Chu, In-Cheol;No, Hee-Cheon;Chun, Moon-Hyun;Sung, Chang-Kyung
    • Nuclear Engineering and Technology
    • /
    • v.31 no.6
    • /
    • pp.548-560
    • /
    • 1999
  • An experimental investigation has been peformed to examine the effects of various geometrical parameters and an initial operating condition on the air-water countercurrent How limitation (CCFL) in a simulated PWR hot leg. A total of 118 experimental data for the onset of CCFL and zero liquid penetration were obtained for various combinations of test parameters. It was observe that the CCFL can be classified into three different categories: (the onset of CCFL, (the partial liquid delivery, and (r) the zero liquid penetration. The observed mechanisms of the onset of CCFL were different depending on the inlet water flow rate. The parametric effects of pipe diameter, horizontal pipe length, horizontal pipe length-to-diameter (L/D) ratio, and initial water level in the horizontal pipe of the test section on the onset of air-water CCFL were also examined. An empirical correlation for the onset of CCFL in a horizontal pipe connected to an inclined riser was developed in terms of Wallis flooding parameters for the low inlet water flow rate region. Comparisons of the present empirical correlation with the air-water CCFL data of large pipe diameters show that the present correlation agrees more closely with the experimental data than the existing CCFL correlations.

  • PDF

The Optimal Design and Performance Test of Plunger Pump (플런저 펌프 설계 및 성능시험)

  • 김동수;서현석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.840-843
    • /
    • 2003
  • The Paper presents theoretical and experimental investigation of plunger type water hydraulic pump (plunger pump). An analysis of Crank shaft for plunger pump is carried out. With this results, the optimal dimensions of plunger pump are determined. And performance test results about slide resistance, hydraulic leak test, efficiency-pressure. and flow-speed and flow-pressure are presented.

  • PDF

Design and Implementation of Fluid Flow Generation System by using Water Captures (물받이를 이용한 유수발전장치의 설계 및 구현)

  • Son, Young-Dae;Jung, Hyun-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.413-421
    • /
    • 2012
  • This paper proposes the design and implementation of fluid flow generation system by using polypropylene(PP) water capture, which harvests electric energy from the kinetic energy of tidal current or water flow and drives the desired load, and applies it to the discharge drain of Hadong thermal power plant. This experimental system is composed of water captures, driving wheel, gear trains, 10[kW] synchronous generator, and three phase rectifying circuit which drives lamp load for test. The proposed water capturing system which is composed of water captures, rope and driving wheel, rotates as caterpillar according to water flow. This system is very easy to manufacture and more economical than another type of tidal current turbines such as conventional propeller and helical type. Also, we estimated the available fluid flow energy that can be extracted from the cooling water in discharge drain based on drain's cross-sectional area. Therefore, this paper confirms the validity of proposed fluid flow generation system with water captures and the possibility of its application for renewable energy generation in discharge drain of thermal power plant, from the obtained performance characteristic of this energy conversion system.

An experimental study on cooling characteristics of mist impinging jet on a flat plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Sang-Uk;Chung, Won-Seok;Lee, Joon-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.528-533
    • /
    • 2001
  • An experimental study is carried out to investigate the effects of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. Experiments are conducted with air mass flow rates from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used for the purpose of controlling air and water mass flow rates. In this study, a new test section is designed to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases, and that the increases in water flow rate mainly enhance cooling performance. Air mass flow rate weakly influences averaged heat transfer coefficient when water mass flow rate is low, but averaged heat transfer coefficient increases remarkably as air mass flow rate in case of high water mass flow rate.

  • PDF

An Experimental Study on Cooling Characteristics of Mist Impinging Jet on a Flat Plate (평판에 분사된 분무충돌제트의 냉각특성에 대한 실험적 연구)

  • Jun, Snag-Uk;Jung, Won-Seok;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.511-517
    • /
    • 2003
  • An experiment is conducted to investigate the effect of air and water mass flow rates on cooling characteristics of mist impinging jet on a flat plate. The air mass flow rate ranges from 0.0 to 3.0 g/s, and water mass flow rates from 5.0 to 20.0 g/s. An air-atomizing nozzle is used fur the purpose of controlling air and water mass flow rates. The test section is designed distinctively from previous works to obtain local heat transfer coefficient distributions. Heat transfer characteristics of the mist impinging jet are explained with the aid of flow visualization. Surface temperature and heat transfer coefficient distributions become more uniform as air mass flow rate increases. The water flow rate provides substantial contribution to enhancement of cooling performance. On the other hand, The air mass flow rate weakly influences the averaged heat transfer rate when the water mass flow rate is low, but the averaged heat transfer rate Increases remarkably with the air mass flow rate in case of the high water mass flow rate.

Hydraulic Model Test and Numerical Analysis of Grass Concrete in River Environment (자연형 호안공법의 그라스콘의 수리모형실험 및 수치해석 연구)

  • Jang, Suk-Hwan;Park, Sung-Bum;Park, Sang-Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1244-1248
    • /
    • 2007
  • This study aims at investigating the in situ applying grass concrete system in river environments which widely used nowadays and reviewing the effect and flow resistance for grass concrete structure through the physical experiments by hydraulic model test and developing application method in river bed which has rigid flood resistance. Grass concrete structure has been independently tested under high velocity flow under the super critical condition, as well as sud critical flow measuring velocity and water surface elevation along the cross section. This results shows grass concrete system is also suited to use in aggressive river environments such as repairing a flood damaged embankment that had placed at risk the adjacent drainage channel with vegetation.

  • PDF

DEVELOPMENT OF AN IMPROVED FARE TOOL WITH APPLICATION TO WOLSONG NUCLEAR POWER PLANT

  • Lee, Sun Ki;Hong, Sung Yull
    • Nuclear Engineering and Technology
    • /
    • v.45 no.2
    • /
    • pp.257-264
    • /
    • 2013
  • In Canada Deuterium Uranium (CANDU)-type nuclear power plants, the reactor is composed of 380 fuel channels and refueling is performed on one or two channels per day. At the time of refueling, the fluid force of the cooling water inside the channel is exploited. New fuel added upstream of the fuel channel is moved downstream by the fluid force of the cooling water, and the used fuel is pushed out. Through this process, refueling is completed. Among the 380 fuel channels, outer rows 1 and 2 (called the FARE channel) make the process of using only the internal fluid force impossible because of the low flow rate of the channel cooling water. Therefore, a Flow Assist Ram Extension (FARE) tool, a refueling aid, is used to refuel these channels in order to compensate for the insufficient fluid force. The FARE tool causes flow resistance, thus allowing the fuel to be moved down with the flow of cooling water. Although the existing FARE tool can perform refueling in Korean plants, the coolant flow rate is reduced to below 80% of the normal flow for some time during refueling. A Flow rate below 80% of the normal flow cause low flow rate alarm signal in the plant operation. A flow rate below 80% of the normal flow may cause difficulties in the plant operation because of the increase in the coolant temperature of the channel. A new and improved FARE tool is needed to address the limitations of the existing FARE tool. In this study, we identified the cause of the low flow phenomena of the existing FARE tool. A new and improved FARE tool has been designed and manufactured. The improved FARE tool has been tested many times using laboratory test apparatus and was redesigned until satisfactory results were obtained. In order to confirm the performance of the improved FARE tool in a real plant, the final design FARE tool was tested at Wolsong Nuclear Power Plant Unit 2. The test was carried out successfully and the low flow rate alarm signal was eliminated during refueling. Several additional improved FARE tools have been manufactured. These improved FARE tools are currently being used for Korean CANDU plant refueling.

VISUALIZATION OF THE INTERNAL WATER DISTRIBUTION AT PEMFC USING NEUTRON IMAGING TECHNOLOGY: FEASIBILITY TEST AT HANARO

  • Kim Tae-Joo;Jung Yong-Mi;Kim Moo-Hwan;Sim Cheul-Muu;Lee Seung-Wook;Jeon Jin-Soo
    • Nuclear Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.449-454
    • /
    • 2006
  • Neutron imaging technique was used to investigate the water distribution and movement in Polymer Electrolyte Membrane Fuel Cell (PEMFC) at HANARO, KAERI. The Feasibility tests were performed in the first and second exposure rooms at the neutron radiography facility (NRF) at HANARO in order to check the ability of each exposure room, respectively. The feasibility test apparatus was composed of water and pressurized air before making up the actual test apparatus. Due to the low neutron intensity in the second exposure room, the exposure time was too long to investigate the transient phenomena of PEMFC. Although the exposure time was improved to 0.1 sec in the first exposure room, it was difficult to discriminate detail water movement at the channel due to the high noise level. Therefore, the experimental setup must be optimized according to the test conditions. Water discharge characteristics were investigated under different flow field geometries by using feasibility test apparatus and the neutron imaging technique. The water discharge characteristics of a 3-parallel serpentine are superior to those of a 1-parallel serpentine, but water at Membrane Electrode Assembly (MEA) was not removed, regardless of the flow field type.

Performance of self-compacting concrete with manufactured crushed sand

  • Benyamina, Smain;Menadi, Belkacem;Bernard, Siham Kamali;Kenai, Said
    • Advances in concrete construction
    • /
    • v.7 no.2
    • /
    • pp.87-96
    • /
    • 2019
  • Self-compacting concretes (SCC) are highly fluid concrete which can flow without any vibration. Their composition requires a large quantity of fines to limit the risk of bleeding and segregation. The use of crushed sand rich in limestone fines could be an adequate solution for both economic and environmental reasons. This paper investigates the influence of quarry limestone fines from manufactured crushed sand on rheological, mechanical and durability properties of SCC. For this purpose, five mixtures of SCC with different limestone fines content as substitution of crushed sand (0, 5, 10, 15 and 20%) were prepared at constant water-to-cement ratio of 0.40 and $490kg/m^3$ of cement content. Fresh SCC mixtures were tested by slump flow test, V-funnel flow time test, L-box height ratio, segregation resistance and rheological test using a rheometer. Compressive and flexural strengths of SCC mixtures were evaluated at 28 days. Regarding durability properties, total porosity, capillary water absorption and chloride-ion migration were studied at 180 days. For the two test modes in fresh state, the results indicated compatibility between slump flow/yield stress (${\tau}_0$) and V-funnel flow time/plastic viscosity (${\mu}$). Increasing the substitution level of limestone fines in SCC mixtures, contributes to the decrease of the slump flow and the yield stress. All SCC mixtures investigated achieved adequate filling, adequate passing ability and exhibit no segregation. Moreover, the inclusion of limestone fines as crushed sand substitution reduces the capillary water absorption, chloride-ion migration and consequently enhances the durability performance.