• Title/Summary/Keyword: Wastewater effluent

Search Result 880, Processing Time 0.025 seconds

Distribution of Organic Matter and Nitrogenous Oxygen Demand in Effluent of Sewage and Wastewater Treatment Plants (하·폐수처리시설 방류수내 유기물질 및 NOD 분포 특성)

  • Kim, Ho-Sub;Kim, Seok-Gyu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.20-31
    • /
    • 2021
  • In this study, an analysis of the characteristics of organic matter and nitrogenous oxygen demand (NOD) of 17 sewage effluent and wastewater treatments was conducted. High CODMn and carbonaceous biological oxygen demand (CBOD) concentrations were observed in the livestock treatment plants (LTP), wastewater treatment plants(WTP), and night soil treatment plants (NTP), but the highest NOD concentration and contribution rates of NOD to BOD5 were found in sewage treatment plants (STP). There was no significant difference in the CBOD/CODMn ratio for each of the six pollution source groups, but the LTPs, WTPs, and NTPs all showed relatively high CODMn concentrations in their effluent samples, indicating that they are facilities which discharge large amounts of refractory organic matter. The seasonal change of NOD in all facilities' effluent was found to be larger than the seasonal change of CBOD, and data results also revealed an elevation of NOD and NH3-N concentration from December to February, when the water temperature was low. There was no significant difference in NH3-N concentration in relation to pollution source group (p=0.08, one-way ANOVA), but the STP, which had a high NOD contribution rate to BOD5 of 48%, showed a high correlation between BOD5 and NOD (r2=0.95, p<0.0001). These results suggest that the effect of NOD on BOD5 is an important factor to be considered when analyzing STP effluent.

An Experimental Study on the Application of Electrolysis to Nightsoil Treatment Plant Effluent, as a Means of Advanced Treatment Techonology (전해처리법(電解處理法)에 의한 분뇨(糞尿) 2차 처리수(處理水)의 고도처리(高度處理)에 관한 연구(硏究))

  • Chung, Kyeong Jin;Kim, Dong Min;Lee, Dong Houn
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.9 no.2
    • /
    • pp.77-83
    • /
    • 1995
  • The effluent from conventional nightsoil treatment plants contains nutrients, color and chlorides, in addition to residual organics and suspended solids, and thereby causes substantial pollution problems in receving water resources. In order to verify the usefullness of electrolysis in removing those residual pollutants from such conventional nightsoil treatment plant effluent, a bench scale experiment was conducted using sufficiently dilluted human nightsoil as experiment feeds. The result showed mean removals of 45% of total phosphorus and 85% of color, in addition 87% of residual BOD, 47% of residual COD and 85% of residual SS. The optimum electric current was found to be 15 ampere and the optimum hydraulic residence time 21/2 hour.

  • PDF

A Test of Two Models for the Bacteria Flux across the Sediment/Water Interface in an Effluent-dominated Stream (하수처리 방류 소하천내 퇴적물로부터의 박테리아 유출 플럭스모델 비교)

  • Ahn, Jong-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.165-172
    • /
    • 2010
  • Treated sewage could enable growth by providing key nutrients or seeding the sediments with enterococci strains that can grow in the environment. This study is to test the hypothesis that the flux of bacteria into the water column is rate-limited by the transfer of bacteria across the sediment/water interface. Two conceptual models are derived for the transfer of bacteria to the water column from the sediment/water interface: convective diffusion of isolated bacteria and resuspension of particle-associated bacteria. The model predictions are directly tested together with field measurements of bacteria and sediment in an effluent-dominated stream where high concentrations of enterococci in this stream originate primarily from growth of the bacteria in stream sediments. The results reveal that high concentrations of enterococci in this stream are transported primarily by resuspension of particle-associated bacteria accumulated at the sediment/water interface, either in the form of bacterial aggregates or in the form of inorganic particles.

The Role of Enzymes Produced by White-Rot Fungus Irpex lacteus in the Decolorization of the Textile Industry Effluent

  • Shin, Kwang-Soo
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.37-41
    • /
    • 2004
  • The textile industry wastewater has been decolorized efficiently by the white rot fungus, Irpex lacteus, without adding any chemicals. The degree of the decolorization of the dye effluent by shaking or stationary cultures is 59 and 93%, respectively, on the 8th day. The higher level of manganese-dependent peroxidase (MnP) and non-specific peroxidase (NsP) was detected in stationary cultures than in the cultures shaken. Laccase activities were equivalent in both cultures and its level was not affected significantly by the culture duration. Neither lignin peroxidase (LiP) nor Remazol Brilliant Blue R oxidase (RBBR ox) was detected in both cultures. The absorbance of the dye effluent was significantly decreased by the stationary culture filtrate of 7 days in the absence of Mn (II) and veratryl alcohol. In the stationary culture filtrate, three or more additional peroxidase bands were detected by the zymogram analysis.

Preliminary Studies for Efficient Treatment of Wastewater Milking Parlor in Livestock Farm (젖소 착유세정폐수의 효율적인 정화처리를 위한 기초연구)

  • Jang, Young Ho;Lee, Soo Moon;Kim, Woong Su;Kang, Jin Young
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.500-507
    • /
    • 2020
  • This study examined the wastewater at a livestock farm, and found that the dairy wastewater from the milking parlor had a lower concentration than the piggery wastewater, and that it was produced at a rate under 1.3 ㎥/day in a single farmhouse. The amount of dairy wastewater was determined based on the performance of the milking machine, the maintenance method of the milking parlor, and the amount of milk production allocated for each farmhouse, not by the area. The results confirmed that both dairy wastewater treatment processes, specifically those using Hanged Bio-Compactor (HBC) and Sequencing Batch Reactor (SBR), can fully satisfy the water quality standards of discharge. The dairy wastewater has a lower amount and concentration than piggery wastewater, meaning it is less valuable as liquid fertilizer, but it can be easily degraded using the conventional activated sludge process in a public sewage treatment plant. Therefore, discharging the dairy wastewater after individual treatment was expected to be a more reasonable method than consigning it to the centralized wastewater treatment plant. The effluent after the SBR process showed a lower degree of color than the HBC effluent, which was attributed to biological adsorption. In the case of the milking parlor in the livestock farm, the concentrations of the effluents obtained after HBC and SBR treatments both satisfied water quality standards for the discharge of public livestock wastewater treatment plants at 99% confidence intervals, and the concentrations of total nitrogen and phosphorous in untreated wastewater were even lower than the water quality standards of discharge. Therefore, we need to discuss strengthening the water quality standards to reduce environmental pollution.

Effects of Algae Growth on the Effluent of Wastewater Treatment Systems by Using Water Hyacinth (조류 성장이 부레옥잠을 이용한 폐수처리공법의 유출수에 미치는 영향)

  • Lee, Byung-Hun;Lee, Nam-Hee;Kim, Jeong-Suk
    • Journal of Environmental Science International
    • /
    • v.1 no.2
    • /
    • pp.81.2-92
    • /
    • 1992
  • Growing algae spread over open water surface of water hyacinth system the leaves of hyacinth prevented the passage of sunlight through the water surface. The objectives of this study were to investigate the effects of the algae growth on the effluent of water hyacinth wastewater treatment systems operated with the variation of an organic loading rate between 190 to 550 kg COD/ha.day. The effluent from the system contained algae was discharged for about 2-3 weeks from the beginning of experimental operation of water hyacinth systems. BOD and 55 concentration of effluents during algae growthing periods were higher than those during the period of algae control. But nitrogen and phosphrous romoval efficiencies during in algae growthing periods were slighty higher than those during the period of algae control.

  • PDF

Potency of Botryococcus braunii cultivated on palm oil mill effluent wastewater as a source of biofuel

  • Azimatun Nur, Muhamad Maulana;Setyoningrum, Tutik Muji;Budiaman, I Gusti Suinarcana
    • Environmental Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.417-425
    • /
    • 2017
  • Indonesia is known as the largest oil palm producer in the world. However, along with the production, it generates wastes and pollution that caused the environmental problem in surrounding areas. Previous researchers reported that the high palm oil mill effluent (POME) concentration inhibited microalgae growth. However, the inhibition factor was not clearly explained by using kinetic model. This study presents kinetic models of Botryococcus braunii (B. braunii) cultivated on POME wastewater under different turbidity condition. Results showed that the growth model of Zwietering was closely suitable with experimental results. It was found that B. braunii was able to consume organic carbon from the POME wastewater on the logarithmic model. A modified kinetic model of Monod Haldane described the influence of turbidity and chemical oxygen demand on the cultivation. Turbidity of POME medium inhibited the growth rate at KI 3.578 and KII 179.472 NTU, respectively. The Lipid (39.9%), and carbohydrate (41.03%) were found in the biomass that could be utilized as biofuel source.

Survey of the Secondary Effluents from Municipal Wastewater Treatment Plants in Korea (우리나라 하수처리장 방류수 수질현황 및 특성)

  • Kim, Youngchul;An, Ik-Sung;Kang, Min-Gi
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.2
    • /
    • pp.158-168
    • /
    • 2005
  • In this study, the discharging effluents from have been 9 municipal wastewater treatment plants surveyed for 1 year-period. Statistics including probability distribution, cumulative occurrence concentration and other statistical parameters were presented. In addition, treatment performance and its stability were also discussed. Most of the plants, have an operational problem of high soluble organic content in the secondary effluent which may be associated with the integrated treatment of human and livestock manures. Nitrogen concentration in the effluents were usually higher during the period of summer and winter. It was found that this is mainly due to lack of the proper C/N ratio during the summer, or/and the effects of low temperature and less dilution by dry weather during the winter. Phosphorus concentration is sharply increased in June. Discussion with plant operators told that it is due to the dissolution of phosphate from the sludge accumulated in the primary settling tanks from the early spring to june. During this period, usually, sludge treatment line is highly overloaded with flush-outs of the sediments also stored in the bottom of combined sewer due to the low flow during winter season. Most of the plants can meet new effluent discharge limits of the nitrogen and phosphorus, and total coliform without further treatment.

Performance and microbial community analysis for fouling characteristics in a full-scale flat sheet membrane bioreactor (실규모 flat sheet MBR 운영 효율과 Fouling 특성을 위한 미생물 군집 평가)

  • Seungwon Kim;Jeongdong Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.325-334
    • /
    • 2023
  • Membrane bioreactor (MBR) provides the benefits on high effluent quality and construction cost without the secondary clarification. Despite of these advantages, fouling, which clogs the pore in membrane modules, affects the membrane life span and effluent quality. Studies on the laboratory scale MBR were focused on the control of particulate fouling, organic fouling and inorganic fouling. However, less studies were focused on the control of biofouling and microbial aspect of membrane. In the full scale operation, most MBR produces high effluent quality to meet the national permit of discharge regulation. In this study, the performance and microbial community analysis were investigated in two MBRs. As the results, the performance of organic removal, nitrogen removal, and phosphorus removal was similar both MBRs. Microbial community analysis, however, showed that Azonexus sp. and Propionivibrio sp. contributed to indirect fouling to cause the chemical cleaning in the DX MBR.