PA-13.

A Study on the Conversion Indicator of Organic Pollutant for Wastewater Effluent (III)

Byungjin Lim* · Osang Kwon · Yeontaek Rhim National Institute of Environmental Research

Four petroleum manufactories of the 82 discharging facilities were investigated for the study of converting COD_{Mn} method to COD_{Cr} or TOC method. We measured and analyzed COD_{Mn}, COD_{Cr}, and TOC of each sample from the manufactories. While the reliability(R^2) value(0.5 ~ 0.8) of correlation between COD_{Mn} and COD_{Cr} was relatively steady, the reliability range $(0.1 \sim 0.9)$ of correlation between COD_{Mn} and TOC showed large fluctuation by each manufactory. Thus, the study results indicate that COD_{Cr} method is more remunerative than TOC method when converting organic matter index from COD_{Mn} method. Besides, some of the manufactories showed reverse correlation between COD_{Mn} and TOC: the TOC showed low concentration when the COD_{Mn} concentration was high. Therefore, conversion to TOC method has application problem. When the COD_{Cr}/COD_{Mn} regression equation was applied, COD_{Cr} conversion concentration was 155~250mg/L at Class one(daily discharge of over 2,000m³) and 21 7~346mg/L at Class two(daily discharge of below 2,000m²) based on "Na" area(preservation area of water quality, which is preserved Grade III, IV, V of water quality standard). On the other hand, the average organic matter concentration ratio of effluent from wastewater treatment facilities in four petroleum related manufactories ranged between $2.99 \sim 4.77$ for COD_{Cr}/COD_{Mn} and $1.05 \sim 2.5$ for TOC/COD_{Mn} .

Key words: Conversion Indicator, COD_{Mn} , COD_{Cr} , TOC, Petroleum Manufactory, Effluent