DOI QR코드

DOI QR Code

Performance and microbial community analysis for fouling characteristics in a full-scale flat sheet membrane bioreactor

실규모 flat sheet MBR 운영 효율과 Fouling 특성을 위한 미생물 군집 평가

  • Seungwon Kim (Department of Environmental Engineering, Korea National University of Transportation) ;
  • Jeongdong Choi (Department of Environmental Engineering, Korea National University of Transportation)
  • 김승원 (한국교통대학교 환경공학과) ;
  • 최정동 (한국교통대학교 환경공학과)
  • Received : 2023.10.18
  • Accepted : 2023.11.13
  • Published : 2023.12.15

Abstract

Membrane bioreactor (MBR) provides the benefits on high effluent quality and construction cost without the secondary clarification. Despite of these advantages, fouling, which clogs the pore in membrane modules, affects the membrane life span and effluent quality. Studies on the laboratory scale MBR were focused on the control of particulate fouling, organic fouling and inorganic fouling. However, less studies were focused on the control of biofouling and microbial aspect of membrane. In the full scale operation, most MBR produces high effluent quality to meet the national permit of discharge regulation. In this study, the performance and microbial community analysis were investigated in two MBRs. As the results, the performance of organic removal, nitrogen removal, and phosphorus removal was similar both MBRs. Microbial community analysis, however, showed that Azonexus sp. and Propionivibrio sp. contributed to indirect fouling to cause the chemical cleaning in the DX MBR.

Keywords

Acknowledgement

본 연구는 2021년도 한국연구재단 이공분야기초연구사업(2021R1A2C1007887)의 부분적인 지원에 의해 수행되었습니다.

References

  1. Cao, J., Zhang, T., Wu, Y., Sun, Y., Fu, B., Yang, E., Zhang, Q. and Luo, J. (2020). Correlations of nitrogen removal and core functional genera in full-scale wastewater treatment plants: Influences of different treatment processes and influent characteristics, Bioresour. Technol., 297, 122455. 
  2. Choi, J., Kim, E.S., and Ahn, Y. (2017). Microbial community analysis of bulk sludge/cake layers and biofouling-causing microbial consortia in a full-scale aerobic membrane bioreactor, Bioresour. Technol., 227, 133-141.  https://doi.org/10.1016/j.biortech.2016.12.056
  3. Crone, B., Sorial, G.A., Pressman, J.G., Ryu, H., Keely, S.P., Brinkman, N., Bennet-Stamper, C., Garland. (2020). Design and evaluation of degassed anaerobic membrane biofilm reactors for improved methane recovery, Bioresour. Technol. Rep., 10, 100407. 
  4. Deowan, S.A., Galiano, F., Hoinkis, J., Johnson, D., Altinkaya, S.A., Gabriel, B., Hilal, N., Drioli, E. and Figoli, A. (2016). Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment, J. Membr. Sci., 510, 524-532.  https://doi.org/10.1016/j.memsci.2016.03.002
  5. Im, J. and Gil, K. (2014). A study a RCSTP nutrient removal efficiency in winter season, J. Wetland Res., 16, 363-370.  https://doi.org/10.17663/JWR.2014.16.3.363
  6. Judd, S. (2006). The MBR Book : Principles and Applications of Membrane Bioreactors in Water and Wastewater Treatment. Elsevier, Oxford. 
  7. Krzeminski, P., Leverette, L., Malamis, S. and Katsou, E. (2017). Membrane bioreactors-A review on recent developments in energy reduction, fouling, control, novel configuration, LCA and market prospects, J. Membr. Sci., 527, 207-227.  https://doi.org/10.1016/j.memsci.2016.12.010
  8. Liu, C., Sun, D., Zhao, Z., Dang, Y. and Holmes, D.E. (2019). Methanothrix enhances biogas upgrading in microbial electrolysis cell via direct electron transfer, Bioresour. Technol., 291, 121877. 
  9. Ma, Z., Wen, X., Zhao, F., Xi a, Y., Huang, X., Wai te, D. and Guan, J. (2013). Effect of temperature variation on membrane fouling and microbial community structure in membrane bioreactor, Bioresour. Technol., 133, 462-468.  https://doi.org/10.1016/j.biortech.2013.01.023
  10. Metcalf and Eddy, (2014). Wastewater Engineering: Treatment and Resource Recovery. 5th ed, McGraw-Hill, New York.
  11. Meng, F. and He, X. (2015). Effects of naturally occurring grit on the reactor performance and microbial community structure of membrane bioreactors, J. Membr. Sci., 496, 284-292.  https://doi.org/10.1016/j.memsci.2015.09.015
  12. Nabi, M., Liang, H., Zhou, Q., Cao, J., and Gao, D. (2023) In-situ membrane fouling control and performance improvement by adding materials in anaerobic membrane bioreactor: A review, Sci. Total Environ., 865, 161262. 
  13. Oh, H.S., Yeon, K.M., Yang, C.S., Kim, S.R., Lee, C.H., Park, S.Y., Han, J.Y. and Lee, J.K. (2012) Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane, Environ. Sci. Technol., 46(9), 4877-4884.  https://doi.org/10.1021/es204312u
  14. Ouyang, Y., Hu, Y., Huang, J., Gu, Y., Shi, Y., Yi, K. and Yang, Y. (2020). Effects of exogenous quorum quenching on microbial community dynamics and biofouling propensity of activated sludge in MBRs, Biochem. Eng. J., 157, 107534. 
  15. Park, H.D., Chang, I.S. and Lee, K.J. (2015). Principles of membrane bioreactors for wastewater treatment, CRC Press. 
  16. Phan, H.V., Hai, F.I., McDonald, J.A., Khan, S.J., Zhang, R., Price, W.E., Broeckmann, A. and Nghiem, L.D. (2015). Nutrient and trace organic contaminant removal from wastewater of a resort town: Comparison between a pilot and a full scale membrane bioreactor, Int. Biodeterior. Biodegrad., 102, 40-48.  https://doi.org/10.1016/j.ibiod.2015.02.010
  17. Rehman, Z.U., Fortunato, L., Cheng, T. and Leiknes, T.O. (2020). Metagenomic analysis of sludge and early-stage biofilm communities of a submerged membrane bioreactor, Sci. Total Environ., 701, 134682. 
  18. Rezaei, M. and Mehrnia, M.R. (2014). The influence of zeolite (clinoptilolite) on the performance of a hybrid membrane bioreactor, Biores. Technol., 158, 25-31.  https://doi.org/10.1016/j.biortech.2014.01.138
  19. Sayi-Ucar, N., Sarioglu, M., Insel, G., Cokgor, E.U., Orhon, D. and van Loosdrecht, M. C. M. (2015). Long-term study on the impact of temperature on enhanced biological phosphorus and nitrogen removal in membrane bioreactor, Water Res., 84, 8-17.  https://doi.org/10.1016/j.watres.2015.06.054
  20. Sohn, W., Guo, W., Ngo, H.H., Deng, L. and Cheng, D. (2021). Powdered activated carbon addition for fouling control in anaerobic membrane bioreactor, Biores. Technol. Rep., 15, 100721. 
  21. Takimoto, Y., Hatamoto, M., Soga, T., Kuratate, D., Watari, T. and Yamaguchi, T. (2021) Maintaining microbial diversity mitigates membrane fouling of an anoxic/oxic membrane bioreactor under starvation condition, Sci. Total Environ., 759, 143474. 
  22. Teksoy Basaran, S., Aysel, M., Kurt, H., Ergal, I., Akarsubasi, A., Yagci, N., Dogruel, S., Ubay Ubay Cokgor, E., Keskinler, B., Sozen, S. and Orhon, D. (2014). Kinetic characterization of acetate utilization and response of microbial population in super fast membrane bioreactor. J. Membr. Sci., 455, 392-404.  https://doi.org/10.1016/j.memsci.2013.12.035
  23. Xi a, S., Li, J., He, S., Xi e, K., Wang, X., Zhang, Y., Duan, L. and Zhang, Z. (2010). The effect of organic loading on bacterial community composition of membrane biofilms in a submerged polyvinyl chloride membrane bioreactor, Bioresour. Technol., 101(17), 6601-6609.  https://doi.org/10.1016/j.biortech.2010.03.082
  24. Yi, K., Ouyang, Y., Huang, J., Pang, H., Liu, C., Shu, W., Ye, C. and Guo, J. (2023). Evaluating the effect of aeration rate on quorum quenching membrane bioreactors: Performance of activated sludge, membrane fouling behavior, and the energy consumption analysis, J. Environ. Chem. Eng., 11, 109037. 
  25. Zhao, Y., Zhu. S., Fan, X., Zhang, X., Ren, H. and Huang, H. (2022). Precise portrayal of microscopic processes of wastewater biofilm formation: Taking SiO2 as the model carrier. Sci. Total. Environ., 849, 157776.