• Title/Summary/Keyword: Wastes characteristics

Search Result 453, Processing Time 0.025 seconds

Stabilization of expansive soil using industrial wastes

  • Mohanty, Soumendra K.;Pradhan, Pradip K.;Mohanty, Chitta R.
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.111-125
    • /
    • 2017
  • Swelling and shrinkage characteristics of expansive fine grained soil cause volumetric changes followed by distress and damage to the structures. Soil stabilization can be explained as the alteration of the soil properties by chemical, mechanical or any other means in order to enhance the engineering properties of the soil. Utilization of industrial wastes in soil stabilization is cost effective and environment friendly. This paper presents an experimental study on stabilization of expansive soil using industrial wastes, viz. fly ash and dolochar. The paper includes the evaluation of engineering properties like unconfined compressive strength and California bearing ratio (CBR) of expansive soil collected from Balasore district of Odisha stabilized with fly ash and dolochar in different proportions and to predict the influence of these additives on engineering properties and strength characteristics of expansive soil. Both fly ash and dolochar were found to increase the CBR and decrease many index properties such as liquid limit, plastic limit, plasticity index, swelling index and UCS, thus enhancing the strength parameters of expansive soil.

Combustion Characteristics of Synthetic Gas from Flame Pyrolysis Gasification of Polymetric Wastes and their Applicability to Gas Engine System (합성고분자류 폐기물의 화염열분해 가스화에 의한 발생가스의 연소특성 및 가스엔진시스템에의 적용연구)

  • Kim, Tae Kwon;Jang, Jun Young;Shim, Sung Hoon;Kim, Jeung Bea;Kim, Byung Ha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.10 no.4
    • /
    • pp.233-243
    • /
    • 1999
  • Combustion characteristics of synthetic gas from flame pyrolysis gasification of polymetric wastes are reported and the applicability of synthetic gas from flame pyrolysis gasification to a gas engine system is presented. Engine power is easily predicted by the volume percentage of the synthetic gas. Measurements have been made to obtain the range of flame existence in the function of volume percentage of CO and $H_2$ gases in the synthetic gas. In order to clarify the emission of the flames, NOx measurements by chemiluminescent analyser are taken in flames with different equivalent ratios. From the results of the engine performance data we also have demonstrated that the output of the gas engine modified from a LPG engine is about 5 ps at normal rating. We conclude that synthetic gas from flame pyrolysis gasification of polymetric wastes is applicable to a gas engine system.

  • PDF

Adsorption Characteristics of Arsenic using the Recycled Aluminium Oxide (재생 알루미늄 산화물을 이용한 비소 흡착 특성)

  • Min, Kyung-Chul;Kim, Won-Gee;Lee, Seung-Mok;Kim, Keun-Han;Lee, Hee-Yong;Yang, Jae-Kyu;Park, Youn-Jong
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.486-490
    • /
    • 2011
  • As(V) adsorption on aluminum oxide powder which was recycled from industrial wastes containing aluminum hydroxide was evaluated. Aluminum oxide powder in this study was prepared by calcinating aluminum hydroxide wastes at$550^{\circ}C$. Spectroscopic analysis indicated that the aluminum hydroxide wastes were changed to aluminum oxide by calcination. Arsenic adsorption isotherm was conducted with variation of ionic strength and multiple-ion systems using Ca(II) and Cu(II). As(V) removal showed typical anionic adsorption characteristics that the removal efficiency decreased with increasing pH in single As(V) system as well as in binary and ternary system. More than 80% of As(V) at an initial concentration of $5{\times}10^{-5}$ M was removed from aluminum oxide powder in As(V) single system. The effect of ionic strength on As(V) adsorption was negligible, which indicated the strong bonding between aluminum oxide powder and As(V). The removal efficiency of As(V) was higher in a binary system with Cu(II) than in a binary system with Ca(II).

A Development of Landfill Liner by Utilizing Waste Lime (폐석회를 이용한 매립지 차수재 개발)

  • 김준섭;이승학;박준범
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.521-528
    • /
    • 1999
  • As the size of our industry and population inclose, the byproducts such as municipal solid wastes, industrial wastes are in the increasing phase. The treatment of such things is rising as a social problem. Today, the final disposal of these wastes depends mostly on the landfill, and the sanitary landfill is required and designed for preventing soil and groundwater contamination. Clays have been used for a liner material of a sanitary landfill, however, the high quality clay is hard to come by and quite expensive as a lining material in our country. Using the waste lime produced abundantly every year from chemical processes was studied here, made from the proper mixing of the bentonite and the waste lime meets the regulations from the USEPA. The soil property index tests (sieve analysis, specific gravity test Atterberg limit test) were performed, and at last to confirm the sorption characteristics of the bentonite and the waste lime the sorption isotherm equilibrium test and the sorption isotherm were performed with Toluene and Ethylbenzene which are the main components of the leachate from the landfill.

  • PDF

A Study on the layer construction for vegetation using industrial wastes (산업폐기물을 활용한 식생기반 조성에 관한 연구)

  • Yu, Chan;Yang, Ki-Suk;Ryu, Si-Chang;Cho, Byung-Jin;Ahn, Byung-Kwan
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-222
    • /
    • 2003
  • Bech scale tests were performed to evaluate the adaptability of industrial wastes, especially bottom ash, salg and phosphogypsum among others, for constructing the surface layer of a landfill or reclamation, which function is a vegetation base layer. In the test, columes test were used to check the extraction characteristics of wastes and small PVC soil-box that equipped the drainage device was used to model a performance of layers and to monitor the growth of plants at the composite layer of those. Tests have been continued during one and half year and It has been verified that bottom ash and phosphogypsum look like as a valuable material to safely reuse as the vegetation base layer even though some unconfined factors are remain.

  • PDF

Five Previously Unrecorded Fungal Species Isolated from Marine Plastic Wastes in South Korea

  • Ji Seon Kim;Sung Hyun Kim;Wonjun Lee;Chang Wan Seo;Jun Won Lee;Ki Hyeong Park;Young Woon Lim
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.420-428
    • /
    • 2022
  • Plastic wastes have a negative impact on marine environments; however, they can be used as carbon sources and habitats by certain microbes. Microbes in the marine plastisphere can migrate worldwide through the ocean and cause serious environmental problems when they encounter suitable environments. Therefore, efforts to investigate the microbes inhabiting the marine plastisphere are increasing. In the present study, fungal strains were isolated from plastic wastes buried in Korean sea sands and mudflats and identified using molecular and morphological analyses. Five species were identified that were previously unrecorded from South Korea: Cladosporium funiculosum, Neosetophoma poaceicola, Neosetophoma rosigena, Parasarocladium gamsii, and Trichoderma fomiticola. Their molecular phylogenies and morphological characteristics are described in this study.

A study on the physico-chemical characteristics of municipal solid wastes generated in the sunchon city (순천시의 생활폐기물 발생량 예측 및 재활용시설의 용량산정에 관한 연구)

  • Hu, Kwan;Moon, Ok-Ran;Wang, Seung-Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.9 no.4
    • /
    • pp.125-134
    • /
    • 2001
  • The purpose of this study is to provide basic information for a future countermeasure municipal and to establish several wastes policy after investigating solid wastes from Sunchon City. In addition, this research can be supported to manage of recycling plant and to reuse plant of each wastes. Results are as bellows after checking up and analysis type of waste in Sunchon city Unit solid waste generation rate from single family is $0.50kg/person{\cdot}day$, and total solid wastes are 41.9ton/day. Unit solid waste generation rate from apartments is $0.45kg/person{\cdot}day$, and solid wastes generation is 55.5ton/day. Unit solid waste generation rate from agricultural is $0.22kg/person{\cdot}day$ and total solid wastes are 13.5ton/day. That show total amount of municipal solid wastes from residential are 110.9ton/day. Unit solid waste generation rate from traditional markets is $1.85kg/person{\cdot}day$, and solid waste total volume is 5,400kg/day. Unit solid waste generation rate from small store is $2.03kg/person{\cdot}day$, and solid waste total are 25,101kg/day. Therefore, this show that total wastes are 30.50kg from downtown and commercial area. Solid waste quantity from Industrial area (Factory region) is 8.5ton and in case of school and hospitals are 7.2kg/day and 3.0kg/day. Solid waste amount from Institutional is 6.6kg/day. Food wastes were eliminated from municipal solid wastes as standard 63.4ton/day, and combustible wastes were 126.9ton/day. If it schedule about 5 years (by 2006) as durable year for food wastes treatment plant, it is expected 42.5ton/day for treatment capacity. We can judge that it is effective to be set 2 lines equipment ${\times}25ton/day$ as treatment ability under considering unexpected working condition such as any repair, trouble and an electrical load. If it schedule about 10 years (by 2011) as durable year for food wastes treatment plant, it is expected 150 ton/day for treatment capacity. We can conclude that it is effective to be set 2 lines equipment ${\times}80ton/day$ as treatment ability under considering working condition such as low loaded operating and the repair for incineration.

  • PDF

Co-digestion of Thermophilic Acid-fermented Food Wastes and Sewage Sludge (음식물찌꺼기 고온산발효산물과 하수슬러지의 혼합처리)

  • Ahn, Chul-Woo;Jang, Seong-Ho;Park, Jin-Sik
    • Journal of Environmental Science International
    • /
    • v.15 no.9
    • /
    • pp.897-905
    • /
    • 2006
  • This study has been conducted to investigate biodegradation characteristics and optimum mixing ratio for co-digestion with thermophilic acid-fermented food waste and sewage sludge using batch anaerobic digester. As the basis operating conditions for anaerobic digestion, the reaction temperature was controlled $35{\pm}1^{\circ}C$ and stirrer was set 70rpm. Thermophilic acid-fermented food waste and sewage sludge were mixed at the ratio of 10:0, 7:3, 5:5, 3:7, 0:10 and 5;5(food waste : sewage sludge) as the influent substrates. In results of co-digestion according to mixing ratio of thermophilic fermented food wastes and sewage sludge in batch mesophilic anaerobic digestion reactor, $385mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio was more than that of any other mixing ratios. Compared with $293mL\;CH_4/g\;VS_{added}$ of methane production rate at 1:1 mixing ratio of food wastes and sewage sludge, pretreatment of food wastes by thermophilic acid fermentation was more effective in co-digestion with sewage sludge.

Comparison of Anaerobic Digestion Efficiency with Different Temperature of Food Wastes (음식물류폐기물의 성상별 온도변화에 따른 혐기성소화 효율 비교 연구)

  • Hwang, Kwanghyun;Kim, Dongik
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.4
    • /
    • pp.332-339
    • /
    • 2019
  • A comparative study on the anaerobic digestion efficiency according to the temperature change was conducted considering the characteristics of domestic food wastes with high water content of about 80 % or more. The substrate was tested for anaerobic digestion efficiency in two substrates, a liquid component separated naturally from food waste and food waste itself. In the anaerobic digestion experiments, the digestion efficiency was the highest at $55^{\circ}C$ (thermophilic temperature). However, the digestion efficiency at $45^{\circ}C$(middle high temperature) was lower than that at $35^{\circ}C$(mesophilic temperature). The comparison of general food wastes anaerobic digestion requiring 30 days of hydraulic retention time to the liquid component indicated a stable digestion efficiency even after 15 days of hydraulic retention time.In the experiments conducted on food waste, the digestion efficiency at $55^{\circ}C$ was higher than that at $35^{\circ}C$. When the food waste, especially the liquid component originating from food waste, is treated by anaerobic digestion method, the mesophilic temperature and thermophilic temperature conditions are more favorable in the digestion efficiency than the middle high temperature ($45^{\circ}C$). However, when applying thermophilic or mesophilic temperature anaerobic digestion process operation in the field, the amount of energy input should be considered.