DOI QR코드

DOI QR Code

Five Previously Unrecorded Fungal Species Isolated from Marine Plastic Wastes in South Korea

  • Ji Seon Kim (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Sung Hyun Kim (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Wonjun Lee (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Chang Wan Seo (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Jun Won Lee (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Ki Hyeong Park (School of Biological Sciences and Institute of Microbiology, Seoul National University) ;
  • Young Woon Lim (School of Biological Sciences and Institute of Microbiology, Seoul National University)
  • Received : 2022.08.29
  • Accepted : 2022.11.24
  • Published : 2022.12.31

Abstract

Plastic wastes have a negative impact on marine environments; however, they can be used as carbon sources and habitats by certain microbes. Microbes in the marine plastisphere can migrate worldwide through the ocean and cause serious environmental problems when they encounter suitable environments. Therefore, efforts to investigate the microbes inhabiting the marine plastisphere are increasing. In the present study, fungal strains were isolated from plastic wastes buried in Korean sea sands and mudflats and identified using molecular and morphological analyses. Five species were identified that were previously unrecorded from South Korea: Cladosporium funiculosum, Neosetophoma poaceicola, Neosetophoma rosigena, Parasarocladium gamsii, and Trichoderma fomiticola. Their molecular phylogenies and morphological characteristics are described in this study.

Keywords

Acknowledgement

This study was supported by the National Marine Biodiversity Institute of Korea [2022M01100].

References

  1. Plastics Europe. Plastics-the Facts 2021. 2021.
  2. Lebreton L, Van Der Zwet J, Damsteeg JW, et al. River plastic emissions to the world's oceans. Nat Commun. 2017;8(1):1-10.
  3. Kuhn S, Van Franeker JA. Quantitative overview € of marine debris ingested by marine megafauna. Mar Pollut Bull. 2020;151:110858.
  4. Amaral-Zettler LA, Zettler ER, Mincer TJ. Ecology of the plastisphere. Nat Rev Microbiol. 2020;18(3):139-151. https://doi.org/10.1038/s41579-019-0308-0
  5. Li C, Wang L, Ji S, et al. The ecology of the plastisphere: microbial composition, function, assembly, and network in the freshwater and seawater ecosystems. Water Res. 2021;202:117428.
  6. Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the "plastisphere": microbial communities on plastic marine debris. ES. Environ Sci Technol. 2013; 47(13):7137-7146. https://doi.org/10.1021/es401288x
  7. Barros J, Seena S. Plastisphere in freshwaters: an emerging concern. Environ Pollut. 2021;290:118123.
  8. Gonzalez-Pleiter M, Velazquez D, Casero MC, et al. Microbial colonizers of microplastics in an arctic freshwater lake. Sci Total Environ. 2021;795:148640.
  9. Ruthi J, Bolsterli D, Pardi-Comensoli L, et al. The "plastisphere" of biodegradable plastics is characterized by specific microbial taxa of alpine and arctic soils. Front Environ Sci. 2020;8:562263.
  10. MacLean J, Mayanna S, Benning LG, et al. The terrestrial plastisphere: diversity and polymer-colonizing potential of plastic-associated microbial communities in soil. Microorganisms. 2021;9(9):1876.
  11. Jacquin J, Cheng J, Odobel C, et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the "plastisphere. Front Microbiol. 2019;10:865.
  12. Du Y, Liu X, Dong X, et al. A review on marine plastisphere: biodiversity, formation, and role in degradation. Comput Struct Biotechnol J. 2022;20:975-988. https://doi.org/10.1016/j.csbj.2022.02.008
  13. Carpenter EJ, Smith K. Jr. Plastics on the sargasso sea surface. Science. 1972;175(4027):1240-1241. https://doi.org/10.1126/science.175.4027.1240
  14. Wright RJ, Erni-Cassola G, Zadjelovic V, et al. Marine plastic debris: a new surface for microbial colonization. Environ Sci Technol. 2020;54(19):11657-11672. https://doi.org/10.1021/acs.est.0c02305
  15. Zhu D, Ma J, Li G, et al. Soil plastispheres as hotspots of antibiotic resistance genes and potential pathogens. Isme J. 2022;16(2):521-532. https://doi.org/10.1038/s41396-021-01103-9
  16. Gkoutselis G, Rohrbach S, Harjes J, et al. Microplastics accumulate fungal pathogens in terrestrial ecosystems. Sci Rep. 2021;11(1):1-13. https://doi.org/10.1038/s41598-020-79139-8
  17. Kumari A, Chaudhary DR, Jha B. Destabilization of polyethylene and polyvinylchloride structure by marine bacterial strain. Environ Sci Pollut Res Int. 2019;26(2):1507-1516. https://doi.org/10.1007/s11356-018-3465-1
  18. Devi RS, Ramya R, Kannan K, et al. Investigation of biodegradation potentials of high density polyethylene degrading marine bacteria isolated from the coastal regions of Tamil Nadu, India. Mar Pollut Bull. 2019;138:549-560. https://doi.org/10.1016/j.marpolbul.2018.12.001
  19. De Tender C, Devriese LI, Haegeman A, et al. Temporal dynamics of bacterial and fungal colonization on plastic debris in the North sea. Environ Sci Technol. 2017;51(13):7350-7360. https://doi.org/10.1021/acs.est.7b00697
  20. Davidov K, Iankelevich-Kounio E, Yakovenko I, et al. Identification of plastic-associated species in the mediterranean sea using DNA metabarcoding with nanopore MinION. Sci Rep. 2020;10(1):1-11. https://doi.org/10.1038/s41598-019-56847-4
  21. Yamada-Onodera K, Mukumoto H, Katsuyaya Y, et al. Degradation of polyethylene by a fungus, Penicillium simplicissimum YK. Polym Degrad Stab. 2001;72(2):323-327.
  22. Kanelli M, Vasilakos S, Nikolaivits E, et al. Surface modification of poly (ethylene terephthalate) (PET) fibers by a cutinase from Fusarium oxysporum. Process Biochem. 2015;50(11):1885-1892. https://doi.org/10.1016/j.procbio.2015.08.013
  23. Muhonja CN, Makonde H, Magoma G, et al. Biodegradability of polyethylene by bacteria and fungi from Dandora dumpsite Nairobi-Kenya. PLoS One. 2018;13(7):e0198446.
  24. Kim SH, Lee JW, Kim JS, et al. Plastic-inhabiting fungi in marine environments and PCL degradation activity. Antonie Van Leeuwenhoek. 2022;115:1379-1392. https://doi.org/10.1007/s10482-022-01782-0
  25. Rogers SO, Bendich AJ. Extraction of total cellular DNA from plants, algae and fungi. Plant molecular biology manual. Dordrecht: Springer; 1994. p. 183-190.
  26. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  27. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications. 1990;18(1):315-322.
  28. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. https://doi.org/10.1080/00275514.1999.12061051
  29. Groenewald J, Nakashima C, Nishikawa J, et al. Species concepts in Cercospora: spotting the weeds among the roses. Stud Mycol. 2013;75(1):115-170. https://doi.org/10.3114/sim0012
  30. Cai F, Druzhinina IS. In honor of john bissett: authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021;107(1):1-69. https://doi.org/10.1007/s13225-020-00464-4
  31. Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772-780. https://doi.org/10.1093/molbev/mst010
  32. Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22(21):2688-2690. https://doi.org/10.1093/bioinformatics/btl446
  33. Miller MA, Pfeiffer W, Schwartz T. The CIPRES science gateway: enabling high-impact science for phylogenetics researchers with limited resources. In Proceedings of the 1st Conference of the Extreme Science and Engineering Discovery Environment: bridging from the extreme to the campus and beyond, 2012. p. 1-8
  34. Tichelaar G. Acremonium gamsii nov. sp. (hyphomycetes). Acta Bot Neerl. 1972;21(3):197-199. https://doi.org/10.1111/j.1438-8677.1972.tb00770.x
  35. Bustamante DE, Calderon MS, Leiva S, et al. Three new species of Trichoderma in the Harzianum and Longibrachiatum lineages from Peruvian cacao crop soils based on an integrative approach. Mycologia. 2021;113(5):1056-1072.
  36. Bensch K, Groenewald J, Meijer M, et al. Cladosporium species in indoor environments. Stud Mycol. 2018;89:177-301. https://doi.org/10.1016/j.simyco.2018.03.002
  37. Wanasinghe DN, Phukhamsakda C, Hyde KD, et al. Fungal diversity notes 709-839: taxonomic and phylogenetic contributions to fungal taxa with an emphasis on fungi on rosaceae. Fungal Divers. 2018;89(1):1-236. https://doi.org/10.1007/s13225-018-0395-7
  38. Bensch K, Braun U, Groenewald JZ, et al. The genus Cladosporium. Stud Mycol. 2012;72(1):1-401. https://doi.org/10.3114/sim0003
  39. Ebrahimi L, Fotouhifar KB. First report of Neosetophoma poaceicola on apple leaf from Iran. J Crop Prot. 2021;10(2):450-457.
  40. Jaklitsch WM. European species of Hypocrea part I. The green-spored species. Stud Mycol. 2009;63:1-91. https://doi.org/10.3114/sim.2009.63.01
  41. Kornerup A, Wanscher J. Methuen handbook of colour. 3rd ed. London: e. Methuen and Co Ltd. 1978.
  42. Schneider CA, Rasband WS, Eliceiri KW. NIH image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671-675.
  43. Thambugala K, Wanasinghe D, Phillips A, et al. Mycosphere notes 1-50: grass (Poaceae) inhabiting Dothideomycetes. Mycosphere. 2017;8(4):697-796. https://doi.org/10.5943/mycosphere/8/4/13
  44. Ahamed A, Vermette P. Effect of culture medium composition on Trichoderma reesei's morphology and cellulase production. Bioresour Technol. 2009;100(23):5979-5987. https://doi.org/10.1016/j.biortech.2009.02.070
  45. Sharma G, Pandey R. Influence of culture media on growth, colony character and sporulation of fungi isolated from decaying vegetable wastes. J Yeast Fungal Res. 2010;1(8):157-164.
  46. Sikder M, Mallik MRI, Alam N. Identification and in vitro growth characteristics of entomopathogenic fungus-Aschersonia sp. in Bangladesh. azb. 2019;7(1):11-18. https://doi.org/10.13189/azb.2019.070102
  47. Tennakoon DS, Thambugala KM, Wanasinghe DN, et al. Additions to Phaeosphaeriaceae (Pleosporales): Elongaticollum gen. nov., Ophiosphaerella taiwanensis sp. nov., Phaeosphaeriopsis beaucarneae sp. nov. and a new host record of Neosetophoma poaceicola from Musaceae. MycoKeys. 2020;70:59-88. https://doi.org/10.3897/mycokeys.70.53674
  48. Daly P, Cai F, Kubicek CP, et al. From lignocellulose to plastics: knowledge transfer on the degradation approaches by fungi. Biotechnol Adv. 2021;50:107770.
  49. Arya GC, Cohen H. The multifaceted roles of fungal cutinases during infection. JoF. 2022;8(2):199.
  50. Temporiti MEE, Nicola L, Nielsen E, et al. Fungal enzymes involved in plastics biodegradation. Microorganisms. 2022;10(6):1180.