• Title/Summary/Keyword: Waste-to-Energy

Search Result 2,705, Processing Time 0.027 seconds

Melting and draining tests on glass waste form for the immobilization of Cs, Sr, and rare-earth nuclides using a cold-crucible induction melting system

  • Choi, Jung-Hoon;Lee, Byeonggwan;Lee, Ki-Rak;Kang, Hyun Woo;Eom, Hyeon Jin;Park, Hwan-Seo
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1206-1212
    • /
    • 2022
  • Cold-crucible induction melting (CCIM) technology has been intensively studied as an advanced vitrification process for the immobilization of highly radioactive waste. This technology uses high-frequency induction to melt a glass matrix and waste, while the outer surface of the crucible is water-cooled, resulting in the formation of a frozen glass layer (skull). In this study, for the fabrication of borosilicate glass waste form, CCIM operation test with 60 kg of glass per batch was conducted using surrogate wastes composed of Cs, Sr, and Nd as a representative of highly radioactive nuclides generated during spent nuclear fuel management. A 60 kg-scale glass waste form was successfully fabricated through melting and draining processes using a CCIM system, and its physicochemical properties were analyzed. In particular, to enhance the controllability and reliability of the draining process, an air-cooling drain control method that can control draining through air-cooling near drain holes was developed, and its validity for draining control was verified. The method can offer controllability on various draining processes, such as molten salt or molten metal draining processes, and can be applied to a process requiring high throughput draining.

Estimation of Biomass Resources Potential (바이오매스 자원 잠재량 산정)

  • Lee, Joon-pyo;Park, Soon-chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • Biomass has been used for energy sources from the prehistoric age. Biomass are converted into solid, liquid or gaseous fuels and are used for heating, electricity generation or for transportation recently. Solid biofuels such as bio-chips or bio-pellet are used for heating or electricity generation. Liquid biofuels such as biodiesel and bioethanol from sugars or lignocellulosics are well known renewable transportation fuels. biogas produced from organic waste are also used for heating, generation and vehicles. Biomass resources for the production of above mentioned biofuels are classified under following 4 categories, such as forest biomass, agricultural residue biomass, livestock manure and municipal organic wastes. The energy potential of those biomass resources existing in Korea are estimated. The energy potential for dry biomass (forest, agricultural, municipal waste) were estimated from their heating value contained, whereas energy potential of wet biomass (livestock manure, food waste, waste sludge) is calculated from the biological methane potential of them on annual basis. Biomass resources potential of those 4 categories in Korea are estimated to be as follows. Forest biomass 355.602 million TOE, agricultural biomass 4.019 million TOE, livestock manure biomass 1.455 million TOE, and municipal organic waste 1.074 million TOE are available for biofuels production annually.

Extraction of Precipitated Calcium Carbonate from Oyster Shell waste and Its Applications

  • Ramakrishna, Chilakala;Thenepalli, Thriveni;Nam, Seong Young;Kim, Chunsik;Ahn, Ji Whan
    • Journal of Energy Engineering
    • /
    • v.27 no.1
    • /
    • pp.51-58
    • /
    • 2018
  • In this paper, we reported that the influence of advanced functional mineral filler calcium carbonate ($CaCO_3$) extracted from oyster shell waste, which are rich mineral sources of $CaCO_3$. Oyster Shells, available in abundance, have no eminent use and are commonly regarded as waste. Their improper disposal causes a significant level of environmental concern and also results in a waste of natural resources. Recycling shell waste could potentially eliminate the disposal problem, and also turn an otherwise useless waste into high value added products. Oyster shell waste calcination process to produce pure lime (CaO) which have good anti-microbial property for waste water treatment and then focuses on its current applications to treat the coffee waste and its effluents for biological treatment and utilization as a fertilizers.

Design of an Intelligent Controller for Waste Water Heat Pump Recycled Energy Systems

  • Choo, Yeon-Gyu
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.4
    • /
    • pp.375-378
    • /
    • 2011
  • This study is intended to realize an intelligent controller using fuzzy control algorithms in order to recycle energy by recycling the waste water heat discharged by waste water heat collection boilers. Using waste water inflow temperature changes and waste water inflow amount changes as parameters, we present characteristic curves of the number of compressors being operated at fixed speeds and the temperature of hot water being discharged. We propose an intelligent controller that determines the optimum number of compressors being operated at fixed speeds in real time by measuring changes in the temperature and amount of waste water inflows in order to minimize the number of compressors being operated at fixed speeds relative to the waste water load flowing into the waste water heat collection boiler.

The Status and Prospect of Decommissioning Technology Development at KAERI (한국원자력연구원의 해체기술 개발 현황 및 향후 전망)

  • Moon, Jeikwon;Kim, Seonbyung;Choi, Wangkyu;Choi, Byungseon;Chung, Dongyong;Seo, Bumkyoung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.139-165
    • /
    • 2019
  • The current status and prospect of decommissioning technology development at KAERI are reviewed here. Specifically, this review focuses on four key technologies: decontamination, remote dismantling, decommissioning waste treatments, and site remediation. The decontamination technologies described are component decontamination and system decontamination. A cutting method and a remote handling method together with a decommissioning simulation are described as remote dismantling technologies. Although there are various types of radioactive waste generated by decommissioning activities, this review focuses on the major types of waste, such as metal waste, concrete waste, and soil waste together with certain special types, such as high-level and high-salt liquid waste, organic mixed waste, and uranium complex waste, which are known to be difficult to treat. Finally, in a site remediation technology review, a measurement and safety evaluation related to site reuse and a site remediation technique are described.

Characteristics of Cement Solidification of Metal Hydroxide Waste

  • Koo, Dae-Seo;Sung, Hyun-Hee;Kim, Seung-Soo;Kim, Gye-Nam;Choi, Jong-Won
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.165-171
    • /
    • 2017
  • To perform the permanent disposal of metal hydroxide waste from electro-kinetic decontamination, it is necessary to secure the technology for its solidification. The integrity tests on the fabricated solidification should also meet the criteria of the Korea Radioactive Waste Agency. We carried out the solidification of metal hydroxide waste using cement solidification. The integrity tests such as the compressive strength, immersion, leach, and irradiation tests on the fabricated cement solidifications were performed. It was also confirmed that these requirements of the criteria of Korea Radioactive Waste Agency on these cement solidifications were met. The microstructures of all the cement solidifications were analyzed and discussed.

An Investigation Study on Fact of Waste Heat of Domestic Industry (국내 산업폐열 현황에 대한 조사연구)

  • 박일환;박준태;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.10
    • /
    • pp.811-816
    • /
    • 2002
  • Waste heat exhausted from seven types of the domestic industry was surveyed, which include food, fibre, paper & wood, chemical, ceramics, metalworking and others. The databases of waste heat for each industry were made by using ACCESS software of Microsoft, and data were analyzed to get correlation between waste heat and purchase energy. The volume of usable waste heat is estimated to be 9,169,000 TOE in the year of 2000, when the minimum available temperature is set as $100^{\circ}C$ for waste gas, $30^{\circ}C$ for hot water and $100^{\circ}C$ for steam considering the condition of waste heat exhausting facilities and surroundings. This volume of waste heat is approximately 11.9 percent of the purchase energy of the domestic industry.

Safety Assessment for the Landfill Disposal of Decommissioning Waste Solidified by Magnesium Potassium Phosphate Cement

  • Jeong, Jongtae;Baik, Min-Hoon;Lee, Jae-Kwang;Pyo, Jae-Young;Um, Wooyong;Heo, Jong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • The decommissioning of a nuclear power plant generates large amounts of radioactive waste, which is of several types. Radioactive concrete powder is classified as low-level waste, which can be disposed of in a landfill. However, its safe disposal in a landfill requires that it be immobilized by solidification using cement. Herein, a safety assessment on the disposal of solidified radioactive concrete powder waste in a conceptual landfill site is performed using RESRAD. Furthermore, sensitivity analyses of certain selected input parameters are conducted to investigate their impact on exposure doses. The exposure doses are estimated, and the relative impact of each pathway on them during the disposal of this waste is assessed. The results of this study can be used to obtain information for designing a landfill site for the safe disposal of low-level radioactive waste generated from the decommissioning of a nuclear power plant.

An Analysis on the Construction of Energy Exchange Network to Recover Waste Heat Energy in Pohang Steel Industrial Complex (포항철강산업단지 내부 폐열 회수를 위한 에너지 교환망 구축 방안 분석)

  • Lee, Gwang-Goo;Jung, In-Gyung;Chun, Hee-Dong
    • Clean Technology
    • /
    • v.17 no.4
    • /
    • pp.406-411
    • /
    • 2011
  • A detailed database of waste heat is built to propose energy exchange networks to recover waste energy in Pohang Steel Industrial Complex. A visualized technique is used to figure out the status of waste heat energy and to suggest potential energy exchange networks. Several energy networks are proposed in terms of temperature level, the amount of available energy, distance, and construction cost. A simple economical assessment is applied to the energy exchange networks which have higher economic potential. Their average payback period is estimated to be 2.8 years. The total amount of energy saving by constructing the proposed energy exchange networks is 4,778 TOE per year. It corresponds to 11,160 ton $CO_2$ reduction with the assumption that the recycled waste energy replaces the use of LNG in energy-demanding companies.